Eine naturwissenschaftliche Schrift über den Schnee als Neujahrsgabe an einen Freund
Johannes Kepler (1571-1630) legte seine Theorie über die hexagonale Gestalt des Schneekristalls nicht in einer nüchternen Abhandlung vor, sondern kleidete seine naturwissenschaftliche Schrift in eine gefällige Form als Neujahrsgeschenk (strena) an seinen Freund und Gönner Johann Matthäus Wacker von Wackenfels. In scholastischer Tradition lockerte er seine Überlegungen in Vulgärlatein durch private Scherze sowie geistreiche Anspielungen auf antike Dramen, Philosophie und Heldenepik auf.
Nicht nur Verweise auf die klassische Zeit erschweren heute so manchem Leser die Lektüre, sondern auch findige Wortspiele, die auf den Gegenstand und Anlass dieser literarischen Gabe Bezug nehmen: Die Flüchtigkeit und das geringe Gewicht des Schnees lassen diesen wie ein Nichts erscheinen, der umgangssprachlich im Deutschen als „Nix“ bezeichnet werden kann (zugleich lateinisch „nix“: der Schnee).
Die deutsche Übersetzung findet ihre Grenzen an der Homonymie:
Ei ja, beim Herkules, ich habe ein Ding, das kleiner ist als irgendein Tropfen, und das doch eine Form besitzt, ei, welch höchst erwünschtes Neujahrsgeschenk für einen, der das Nichts liebt, und das wert ist, daß es gerade ein Mathematiker schenkt, der ja nichts hat und nichts bekommt, und das dennoch vom Himmel herab fällt und die Ähnlichkeit der Sterne an sich trägt.
(Strunz/Borm S. 4.)
Ich muß zu meinem Herren und Beschützer zurückkehren, solange das kleine Neujahrsgeschenk noch bestehen bleibt, damit es nicht durch den warmen Körperdunst in ein Nichts vergeht.
Und sieh’ da, welch bedeutsamer Name. O Ding, das für WACKHER, der Nichts liebt, äußerst genehm ist. Nam si a Germano quaeras Nix quid sit, respondebit Nihil, siquidem Latine possi.
Kepler hatte allen Grund seinem Freund von Wackenfels dankbar zu sein: Obgleich er als kaiserlicher Mathematiker beschäftigt war, plagten ihn – wegen Gehaltsausständen – Geldsorgen. Sein Freund versorgte ihn mit aktueller Forschungsliteratur und lieh ihm sein Fernrohr für Beobachtungen des nächtlichen Himmels. Zudem fand Kepler in Wackher einen ebenbürtigen Gesprächspartner, mit dem er über naturwissenschaftliche Theorien ebenso wie schöngeistige Themen diskutieren konnte. Daher ist die Selbstbeschreibung Keplers als „Mathematiker, der nichts hat und nichts bekommt“, durchaus wörtlich zu verstehen. Diese finanziellen Nöte waren übrigens der Anlass für Keplers letzten Aufenthalt in Regensburg: In der Hoffnung, vom Kaiser sein Salär einfordern zu können, reiste er 1630 zum Reichstag, erkrankte jedoch schwer und verstarb.
Keplers Abhandlung über den Schnee erschien nicht etwa als persönlicher Brief, wie man vielleicht aus den privaten Anspielungen schließen könnte, sondern war von Anfang an als Veröffentlichung für eine breite Rezeption konzipiert. Lange Zeit wurde diese wenige Seiten umfassende Schrift in ihrer Bedeutung kaum gewürdigt. Zu sehr standen die drei Keplerschen Gesetze über die Berechnung der Planetenbahnen im Vordergrund. Dabei werden in der strena die gleichen Grundsätze der Harmonie im Mikrokosmos wie einst im Makrokosmos des Weltalls verfolgt. Kepler ahnte hier den Kristallaufbau von Festkörpern voraus.
Als Anlass für seine Schrift über die hexagonale Form des Schneekristalls nennt Kepler seinen Spaziergang über die Karlsbrücke in Prag, als es zufällig zu schneien begann. Der Mathematiker beobachtete auf seinem dunklen Mantel die einzelnen Kristalle genau und stellte fest, dass sie alle eine regelmäßige sechseckige Gestalt einnehmen:
„[...] da es immer so ist, sooft es zuschneien beginnt, daß jene ersten Schneeteilchen die Form von sechseckigen Sternchen an sich haben, muß da ein bestimmter Grund vorliegen. Denn wenn es durch Zufall geschähe, warum fallen dann nicht in gleicher Weise Fünfecke oder Siebenecke, warum denn immer Sechsecke, sofern sie noch nicht ineinander verfilzt sind und aus gleich welchem Grunde zu einer Häufung zusammengeklebt sind, sondern spärlich getrennt?“ (Strunz/Borm: S. 5.)
Zieht man den literarischen Charakter der strena in Betracht, so darf man den scheinbar biographischen Anlass, der eine beiläufige Begebenheit erzählt, als launige Hinführung des Lesers an das recht komplexe Thema einschätzen. Wahrscheinlich beschäftigte sich Kepler mit dem Thema der hexagonalen Form als dichteste Packung auf Grund eines Briefverkehrs mit dem englischen Naturwissenschaftler Thomas Harriot schon länger, der anlässlich einer Expedition eine Formel entwickeln sollte, wie viele Kanonenkugeln in einen vorgegeben Raum (z. B. Laderaum eines Schiffs) passen. Es sollte die maximale Dichte an Kanonenkugeln (also Kugeln mit gleichem Durchmesser und Gewicht) im Verhältnis zum Laderaums eines Schiffs mathematisch ermittelt werden.
Für die zweidimensionale Ebene nahm Kepler als die dichteste Packung einen hexagonalen Verbund an, für die dreidimensionale Ebene eine Methode, wie Gemüsehändler rundes Obst stapeln. Er beschreibt die sog. Methode der kubisch dichtesten Kugelpackung (CCP, cubic closest packing). Nach einer Anordnung des runden Obsts in Reih und Glied werden die Lücken in der nächsten Ebene versetzt gefüllt, so dass erst die vierte Ebene in der Anordnung mit der ersten identisch ist.
Johannes Kepler: Strena. Frankfurt am Main 1611. S. 9.
Daneben gibt es auch die hexagonal dichteste Packung (HCP, hexagonal closest packing), bei der die dritte Kugelebene mit der ersten identisch ist, d. h. immer die gleichen Lücken bleiben frei. Nach Goetz unterscheidet Kepler offenbar nicht zwischen diesen beiden Stapelmethoden, bei denen jede Kugel von 12 weiteren berührt (Kuß- oder Koordinationszahl: 12) und eine Dichte von ca. 74,05% im unendlichen Raum erreicht wird. Für den zweidimensionalen Raum stellt Kepler jedoch die Varianten einer hexagonalen oder einer quadratisch angeordneten Basis vor.
Obgleich Kepler keine Differenzierung zwischen den beiden besprochenen Kugelpackungen trifft (im Falle des Schneekristalls wäre nach heutigem Verständnis durch seine molekulare Beschaffenheit die hexagonale Kugelpackung die relevante Darstellung), liegt die Bedeutung seiner Überlegung darin, dass eine dichteste Kugelpackung die sechsfache Struktur des Schneekristalls erklären kann.
Johannes Kepler: Strena. Frankfurt am Main 1611. S. 10.
Kepler sucht über seine theoretischen Überlegungen hinaus, Beispiele in der Natur zu finden, da „der Grund der sechseckig geformten Figur bei dessen Wirken liegt.“ Ihn beschäftigt die Frage, wie diese Art der „Wirkung“ zu beschreiben sei, welche Ursache sie habe, ob die Form angeboren oder durch äußere Einflüsse bedingt sei: Ob es die sechseckige Figur aus einer Notwendigkeit des Materials bewirke oder aus ihrer Natur, der entweder der Urtyp der Schönheit, die in einem Sechseck liegt, angeboren ist, oder ein Wissen um das Ziel, zu dem diese Figur führt?
(Strunz/Borm: S. 5.)
Er erkennt, dass die sechseckige Form der Bienenwabe sich neben Dreiecken und Quadraten eignet, eine Fläche lückenlos zu bedecken: Das Hexagon sei jedoch den beiden anderen geometrischen Figuren überlegen, da es bei gleicher Seitenlänge den größten Flächeninhalt ausweise. Die Biene nutze daher diese Möglichkeit, um möglichst viel Raum einnehmen zu können. Nur eine runde Grundform könne mehr Fläche bieten, eigne sich jedoch in der räumlichen Form eines Zylinders nicht, da eine Fläche nicht lückenlos überbaut werden und in die Zwischenräume Kälte eindringen könne. Zudem würde eine Biene mehr Wachs produzieren und verbauen müssen, da sie bei einer zylindrischen Wabe nur punktuelle Berührungspunkte zu ihren Nachbarn habe, während sie bei der hexagonalen Bauweise die Nachbarwände als ihre eigenen nutzen und somit Energie wie Material sparen könne. Ein weiteres Argument Keplers, dass runde Wände geringere Stabilität aufweisen, geht allerdings ins Leere.
Der Mathematiker bemerkt ferner, dass eine jede Biene nicht nur sechs Nachbarn habe, sondern neun, da die hexagonale Bodenplatte Deckensegmente für drei gegenüberliegende Waben zur Verfügung stelle. (Merkwürdigerweise führt hier Kepler nicht das Argument einer soliden Bauweise an). Insgesamt beurteilt Kepler ein Hexagon – in neuplatonischer Manier – als Ausdruck von Schönheit, Vollkommenheit und edler Form.
Video: Was können wir von den Bienen lernen? (Sendereihe "Mathematik zum Anfassen", BR-Mediathek)Granatapfelkerne und Erbsen sollten Kepler als nächste natürliche Objekte dienen. Seine fortschreitenden Überlegungen richteten sich nun darauf, welche Form runde, formbare Objekte annehmen, wenn sie gleichmäßigem Druck ausgesetzt werden. Da Granatapfelkerne in unterentwickeltem Zustand rund seien und durch den Druck der ledrigen Außenhülle des Granatapfels ihrem ungehemmten Wachstumstrieb nicht nachkommen könnten und daher (unter Anordnung der dichtesten Packung) zusammengepresst werden, nähmen sie dodekaedrische Form an. Unter experimentellen Bedingungen könne man gleiches Phänomen bei Erbsen beobachten. Kepler schlussfolgerte, dass die dichteste Packung dadurch erreicht werde, wenn der Körper in der Mitte von 12 Körpern umgeben werde: Der Rhombendodekaeder sei daher die dichteste räumliche Anordnung, also ein Körper, der aus zwölf gleichmäßigen rautenförmigen Flächen besteht.
Die in der Natur häufig auftretenden Fünfergruppen (fünf Blütenblätter, fünf Kernkammern bei Äpfeln und Birnen) kann Kepler nur schwerlich naturwissenschaftlich erklären: Er verweist auf die Zahl Fünf und ihre Rolle im goldenen Schnitt und schreibt ihr eine ästhetische Funktion zu, die zudem mit Lebenskraft und Fruchtbarkeit einhergehe. Wie die spätere Forschung zeigen konnte, sind dennoch die Beobachtungen Keplers nicht als bloße Phantasie zu werten: Liest man die Goldene Zahl als Zahlenfolge im Sinne Fibonaccis, so wird man dieses Phänomen auch in anderen Zusammenhängen entdecken wie z. B. den Samen der Sonnenblume.
Nach all diesen Vorüberlegungen wendet sich Kepler schließlich wieder dem Thema seiner Schrift zu: dem Schnee. Leider wird nur in einigen Übersetzungen eine sprachlich notwendige Differenzierung getroffen. Das lat. Wort nix wird von Kepler weniger im Sinne einer Schneeflocke als vielmehr als deren Einzelbaustein verwendet, nämlich des Schneekristalls.
Der Naturwissenschaftler erkannte, dass Schneekristalle zwar aus Eis bestehen, sich jedoch in ihrer Erscheinung vom gefrorenen Wasser unterscheiden wie z. B. vom Hagel als Niederschlagsphänomen. Da der Kristallisierungsprozess eine Resublimation von Wasserdampf voraussetze, nahm der Naturwissenschaftler an, dass Schneekristalle aus winzigen gefrorenen, gleichgearteten Wasserdampfkügelchen in einer besonderen Anordnungsform bestehen: Die Kondensation entsteht gewiß durch die Kälte. Durch die Kondensation aber geht der Dunst zur Form des Sterns über. […] Zum zweiten sei es, daß diese Dunstkügelchen sich gegenseitig in einer bestimmten Anordnung berühren.
(Strunz/Borm: S. 10/13.) Die Notwendigkeit eines Kristallisationskeims in Form z. B. eines Staubkörnchens findet keinen Eingang in die Überlegungen Keplers.
Kepler beschäftigt sich zuerst mit der Frage, warum ein Schneekristall flach („platt“), also zweidimensional sei. Da ein Schneekristall nur zwischen Kalt- und Warmfront entstehen kann und dieser mögliche Entstehungsraum sehr klein und in einer Ebene liege, sei die Schneeflocke flach. Mit damaligen Methoden musste in den Augen Keplers, ein Schneekristall zweidimensional erscheinen. (In Wirklichkeit ist er jedoch dreidimensional gestaltet, wobei seine Tiefe sehr gering ist, während die dendritischen Ausläufer den optischen Eindruck eines flachen Kristalls entstehen lassen.) Im Folgenden wird sich daher Kepler mit der zweidimensionalen Anordnung von gleichförmigen Eiskügelchen beschäftigen.
Für die sechseckige Form des Schneekristalls lieferte Kepler eine Theorie, für die erst mit modernen Geräten mehr als 300 Jahre später ein Beweis gefunden werden konnte. Er vermutete, dass für die äußere Gestalt die Eigenschaften von kleinen Kristallbausteinen verantwortlich sind, die gewissermaßen einen Bauplantyp vorgeben. Diese Bestandteile des Schneekristalls seien so klein, dass sie nicht mit dem Auge erfasst werden können. Kepler greift hier auf eine atomistische Vorstellung zurück, wie sie in der Antike vor allem von Demokrit und den Epikuräern vertreten worden war. Wie der Briefwechsel zwischen Kepler und Thomas Harriot belegt, hatte einst Harriot Kepler atomistische Lösungsvorschläge unterbreitet, die jedoch damals von Kepler noch zurückgewiesen worden waren.
Kepler vermutete, dass sich die Sechseckigkeit und die sechszählige Symmetrie eines Schneekristalls darin begründe, dass sich kleinste, gleichgeartete Teilchen in dieser Weise anordnen, da nach ihrer Eigenschaft dies die dichteste Packung sei. Er zieht sogar in Erwägung, dass diese mineralähnliche Struktur durch ein Salz verursacht sein könne. Zu seiner Zeit konnte Kepler natürlich noch nicht Atome von Molekülen unterscheiden, so wenig wie er die Ausbildung von Wasserstoffbrücken zwischen Wassermolekülen annehmen konnte, die in ihrem Streben nach dem niedrigsten Energieniveau durch ihre Bauweise eine hexagonale Form im Kristallgitter einnehmen: „Daher sollen die Chemiker sagen, ob im Schnee ein Salz ist, welcher Art dieses Salz ist und wie es die Figur hervorbringen könne.“ (Strunz/Borm: S.19.)
Verwundert wurde die Annahme Keplers, einer gestaltenden, übernatürlichen Kraft, einer facultas formatrix, rezipiert, die den Schöpferwillen in der Schönheit der Kristalle ausdrücke. Ein Schlüssel mag in einer veränderten Lesart liegen, dass Kepler nicht etwa seine zuvor postulierte Theorie der atomaren Beschaffenheit durch einen übernatürlichen Gestaltungswillen unterlaufe, sondern vielmehr den innewohnenden Bauplan dieser kleinsten Teile, die sich wie von selbst zu wunderschönen, aber doch sich ähnelnden Formen arrangieren, einer göttlichen Macht zuschreibt.
Da Kepler keine näheren Beschreibungsmodelle für Aussehen und Eigenschaft der kleinsten Teilchen geben konnte, verweist er auf die Disziplin der Chemie, die eine Antwort liefern könnte. Erst der deutsche Physiker Max von Laue konnte durch seine Entdeckung, dass sich durch die Beugung von Röntgenstrahlen Kristallgitter darstellen lassen, Keplers These 1912 beweisen.
Der Mathematiker Thomas Hales (University of Pitsburgh) legte 1998 einen Beweis für die Keplersche Vermutung der dichtesten Packung im dreidimensionalen Raum vor und ein Gutachtergremium war sich zu 99 Prozent sicher, dass ein vollständiger Beweis vorliegt. In der Fachwelt herrscht jedoch Uneinigkeit darüber, wann ein Beweis von Computerberechnungen nutzt, um als vollständig anerkannt werden zu können.
Auf seinen Reisen verzeichnete Kepler in den Randmerkungen zu seinen Ephemeriden mehrfach das Wetter Regensburgs. In den Wintermonaten zeichnete es sich vor allem durch Nebel, strenge Kälte, eisigem Wind und Schnee aus. Im Gegensatz zu Placidus Heinrich handelt sich bei diesen Wetterbeobachtungen nicht um eine systematische Dokumentation des Regensburger Wetters, sondern um eine punktuelle Erfassung im Rahmen mehrerer Tage bis Monate.