Zu Hauptinhalt springen

Publikationen

Preprints:   

  1. A fast point charge interacting with the screened Vlasov-Poisson system. Richard M. Höfer, Raphael Winter.To appear in Arch. Rational Mech. Anal. (2024). arxiv:2205.00035
  2. Sedimentation of particles with very small inertia I: Convergence to the transport-Stokes equation. Richard M. Höfer, Richard Schubert. To appear in Duke Math. J. (2024) arXiv:2302.04637(2023)
  3. Richard M. Höfer, Amina Mecherbet, Richard Schubert. Non-existence of mean-field models for particle orientations in suspensions. arxiv:221015382 (2022)
  4. Homogenization of the Navier-Stokes equations in perforated domains in the invicid limit. Richard. M. Höfer. arxiv:2209.06075 (2022)
  5. Fluctuations in the homogenization of the Poisson and Stokes equations in perforated domains. Richard M. Höfer, Jonas Jansen. To appear in Arch. Rational Mech. Anal. (2024). arXiv:2004.04111 (2020)

Published:

  1. Non-existence of mean-field models for particle orientations in suspensions. Richard M. Höfer, Amina Mecherbet, Richard Schubert, Journal of Nonlinear Science Vol. 34, Art. No. 3 (2024)
  2. Hindered settling of well-separated particle suspensions
    Matthieu Hillairet, Richard M. Höfer. Pure and Applied Analysis, Vol. 6, p.p. 581-609 (2024)
  3. Derivation of the viscoelastic stress in  Stokes flows induced by non-spherical Brownian rigid particles through homogenization. Richard M. Höfer, Marta Leocata, Amina Mecherbet, Pure and Applied Analysis Vol 5, pp. 409-460 (2023)
  4. Homogenization of the Navier-Stokes equations in perforated domains in the invicid limit. Richard. M. Höfer, Nonlinearity Vol. 36, 6019 (2023)
  5. Convergence of the pressure in the homogenization of the Stokes equations in randomly perforated domains. Arianna Giunti, Richard M. Höfer. J. Diff. Equ., Vol. 320, pp. 399-418 (2022)
  6. Motion of several slender rigid filaments in a Stokes flow. Richard M. Höfer, Christophe Prange, Franck Sueur. J. Éc. polytech., Vol. 9, pp. 327-380 (2022)
  7. Convergence of the method of reflections for particle suspensions in Stokes flows. Richard M. Höfer. J. Differ. Equ., Vol. 297, pp. 81-109 (2021)
  8. Darcy's law as low Mach and homogenization limit of a compressible fluid in perforated domains. Richard M. Höfer, Karina Kowalzcyk, Sebastian Schwarzacher. Math. Models Methods Appl. Sci., Vol. 31, pp. 1787-1819  (2021)
  9. The influence of Einstein's effective viscosity on sedimentation at very small particle volume fraction. Richard M. Höfer and Richard Schubert. Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 38, pp. 1897-1927 (2021)
  10. Mild assumptions on the derivation of Einstein's effective viscosity formula. David Gérard-Varet and Richard M. Höfer. Commun. Partial Differ. Equ., Vol. 46, pp. 611-629 (2021)
  11. Non-geometric convergence of the classical alternating Schwarz method. Gabriele Ciaramella and Richard M. Höfer. Domain Decomposition Methods in Science and Engineering XXV, Lecture Notes in  Computational Science and Engineering, pp. 193-201 (2020)
  12. Homogenization for the Stokes equations in randomly perforated domains under almost minimal assumptions on the size of the holes. Arianna Giunti and Richard M. Höfer. Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 35, pp. 1829–1868 (2019)
  13. Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes. Arianna Giunti, Richard M. Höfer and Juan J.L. Velázquez. Commun. Partial. Differ. Equ., Vol. 43, pp. 1377–1412 (2018)
  14. The inertialess limit of particle sedimentation modeled by the Vlasov–Stokes equations. Richard M. Höfer. SIAM J. Math. Anal., Vol. 50, pp. 5446–5476 (2018)
  15. Sedimentation of inertialess particles in Stokes flows. Richard M. Höfer. Comm. Math. Phys., Vol. 360, pp. 55–101 (2018)
  16. The method of reflections, homogenization and screening for Poisson and Stokes equations in perforated domains. Richard M. Höfer and Juan J.L. Velázquez. Arch. Rational Mech. Anal., Vol. 227, pp. 1165–1221 (2018)

Theses:

  1. Sedimentation of particle suspensions in Stokes flows. Richard M. Höfer. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2019)
  2. Screening in the perforated space by the method of reflections. Richard M. Höfer.   Master thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2015)

Fakultät für Mathematik

Prof. Dr. Richard Höfer

Prof. Dr. Richard Höfer

Sekretariat:
Doris Ferstl
Büro: M111 A
Tel: 0941/943-2773