Prof. Dr. Franz J. Gießibl erhält MRS "Innovation in Materials Characterization Award“ 2023
Der Physiker Prof. Dr. Franz J. Gießibl, der an der UR am Institut für Experimentelle und Angewandte Physik eine Professur für Rasterkraftmikroskopie innehat, wurde von der Materials Research Society (MRS) mit dem "Innovation in Materials Characterization Award“ ausgezeichnet.
Die MRS ist eine internationale, gemeinnützige Gesellschaft auf dem Gebiet der Materialforschung. Sie wurde im Jahr 1973 gegründet, hat ihren Sitz in Pennsylvania, USA, und hat Mitglieder in über 90 Ländern.
Spacer
Publication
Structural Characterization of Defects in the Topological Insulator Bi2Se3 at the Picometer Scale
Alexander Liebig, Christoph Setescak, Adrian Weindl and Franz J. Giessibl
Edge channels of broken-symmetry quantum Hall states in graphene visualized by atomic force microscopy
Sungmin Kim, Johannes Schwenk, Daniel Walkup, Yihang Zeng, Fereshte Ghahari, Son T. Le, Marlou R. Slot, Julian Berwanger, Steven R. Blankenship, Kenji Watanabe, Takashi Taniguchi, Franz J. Giessibl, Nikolai B. Zhitenev, Cory R. Dean & Joseph A. Stroscio
Achieving μeV tunneling resolution in an in-operando scanning tunneling microscopy, atomic force microscopy, and magnetotransport system for quantum materials research
Johannes Schwenk, Sungmin Kim, Julian Berwanger, Fereshte Ghahari, Daniel Walkup, Marlou R. Slot, Son T. Le, William G. Cullen, Steven R. Blankenship, Sasa Vranjkovic, Hans J. Hug, Young Kuk, Franz J. Giessibl, and Joseph A. Stroscio
Experimental use of the inflection point test for force deconvolution in frequency-modulation atomic force microscopy to turn an ill-posed situation into a well-posed one by proper choice of amplitude
Alexander Liebig wins best teacher's award of the Physics Faculty
Publication
Radio frequency filter for an enhanced resolution of inelastic electron tunneling spectroscopy in a combined scanning tunneling- and atomic force microscope
Angelo Peronio, Norio Okabayashi, Florian Griesbeck, and Franz Giessibl
Preisträger Professor Baratoff (2. von links) mit einem aus Aluminium gefertigten Modell einer Siliziumoberfläche, welches auf vierzigmillionenfach vergrößerten experimentellen Kraftmikroskopiedaten beruht. Lokale Organisatoren Prof. Dr. F.J. Gießibl (links), Prof. Dr. J. Repp (2. von rechts), PD Dr. J. Weymouth (rechts)
Analysis of Airborne Contamination on Transition Metal Dichalcogenides with Atomic Force Microscopy Revealing That Sulfur Is the Preferred Chalcogen Atom for Devices Made in Ambient Conditions
K. Pürckhauer, D. Kirpal, A. J. Weymouth and Franz J. Giessibl
Influence of atomic tip structure on the intensity of inelastic tunneling spectroscopy data analyzed by combined scanning tunneling spectroscopy, force microscopy, and density functional theory
Norio Okabayashi, Alexander Gustafsson, Angelo Peronio, Magnus Paulsson, Toyoko Arai, and Franz J. Giessibl
Subatomare Auflösung auf Adatomen und kraftfeldabhängige laterale Manipulation mit einem eigenentwickelten Tieftemperatur-Rasterkraftmikroskop
Gerhard Ertl Award
Dr. Jay Weymouth won the Gerhard Ertl Young Investigator Award in 2015. This award is given by the Surface Science division of the German Physicist's Society (DPG) to outstanding young scientists. It is named after Prof. Gerhard Ertl (of the Fritz-Haber Institute in Berlin), who won the Nobel Prize in Chemistry in 2007.
Publication
Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters
Matthias Emmrich, Ferdinand Huber, Florian Pielmeier, Joachim Welker, Thomas Hofmann, Maximilian Schneiderbauer, Daniel Meuer, Svitlana Polesya, Sergiy Mankovsky, Diemo Ködderitzsch, Hubert Ebert, Franz J. Giessibl
CO Tip Functionalization Inverts Atomic Force Microscopy Contrast via Short-Range Electrostatic Forces
Maximilian Schneiderbauer, Matthias Emmrich, Alfred J. Weymouth, and Franz J. Giessibl
What does a balloon sticking to a wall have in common with an atomic-scale insulator?
When we consider the interaction between atoms, we often think about the forming and breaking of chemical bonds that is best described with quantum mechanics. But electrostatic forces, like the ones responsible for sticking a balloon on a wall after you rub on your head, also play a role at the atomic scale. Salt, made up of sodium and chloride, is a great example of the importance of these forces. The sodium and chloride atoms have different charges that keep the salt crystal together. Nanotechnology is making use of these ionic materials at the atomic scale as an insulating layer – like the plastic coating of a wire. We used an atomic force microscope to investigate one of these materials – Copper with Nitrogen in it – at the atomic scale to see what role electrostatics plays. By picking up or putting down a molecule on the tip, we can change the charge at the end of the tip. We then simulated these two cases – with and without a molecule – using just the electrostatic interaction. The great agreement between our model and our data tell us how important these interactions are even at the scale of two atoms.
Quantifying molecular stiffness and interaction with lateral force microscopy
Alfred J. Weymouth, Thomas Hofmann, Franz J. Giessibl
One of the most impressive atomic force microscopy (AFM) images was taken by Leo Gross and coworkers at IBM of a molecule showing every carbon-carbon bond within it [Gross et al, Science 325, 1110]. A key step was to functionalize the tip with a CO molecule, making the apex of the AFM tip small and chemically inert [Bartels et al, Appl. Phys. Lett., 71, 213]. However, this comes with a complication: The CO isn’t stiff but rather pivots when a horizontal force is applied. Moreover, standard experimental and theoretical approaches have not been able to characterize this torsional spring. We modified our AFM to be sensitive to lateral forces (LFM). As we measure forces along the surface, we are highly sensitive to short-range interactions. We combined both LFM and AFM data of a CO terminated tip probing a CO surface molecule, to determine the parameters of a simple model: two torsional springs interacting via a Morse potential.