Go to content

More Research Highlights


Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe2/WSe2 Heterobilayers: From Energy Bands to Dipolar Excitons

We explored the effects of electric fields and the separation of individual layers on the spin-valley physics of van-der-Waals MoSe2/WSe2 heterobilayers using advanced first-principles methods. Within our recent work, we put a special focus on dipolar (interlayer) excitons – the exciton-forming electrons and holes are thereby localized in different layers –, for which multilayered van-der-Waals heterostructures provide a suitable platform to emerge.

This work has been published in Nanomaterials.


Strong Manipulation of the Valley Splitting upon Twisting and Gating in MoSe2/CrI3 and WSe2/CrI3 Van-Der-Waals Heterostructures

By means of first-principles calculations, we studied the impact of twisting and gating on the electronic properties of MoSe2/CrI3 and WSe2/CrI3 van-der-Waals heterostructures. Fitting the ab-initio bandstructures to a well-established model Hamiltonian, we demonstrate that twisting and gating provide important control knobs to strongly tune the valley splitting.

This work has been published in Physical Review B.


  1. Physics Department
  2. Condensed Matter Theory

Fabian Group

SPINTRONICS


Secretarial Office:
+49 (0)941 943 2030
fabian.office@ur.de

SFB 1277-Office:
+49 (0)941 943 2264
sfb1277.office@ur.de