Go to content
  1. HOMEPAGE UR

Faculty of Mathematics

Prof. Dr. Klaus Künnemann

Physik Aussen Quadr
CONTACT

Building M, Room 210
Phone 0941 943 2763

Assistant:
Andrea Kotzulla
Building M, Room 218
Phone 0941 943 2598

Research

Publications

Fang, Yanbo; Gubler, Walter; Künnemann, Klaus: On the non-archimedean Monge-Ampère equation in mixed characteristic. Preprint 2022. (arXiv)

Burgos Gil, José Igancio; Gubler, Walter; Jell, Philipp; Künnemann, Klaus: Pluripotential theory for tropical toric varieties and non-archimedean Monge-Ampére equations. Preprint 2021 (arXiv)

Burgos Gil, José Igancio; Gubler, Walter; Jell, Philipp; Künnemann, Klaus: A comparison of positivity in complex and tropical toric geometry. Mathematische Zeitschrift, 299 (3) 1199-1255. (arXiv)(doi)

Walter Gubler, Philipp Jell, Klaus Künnemann, Florent Martin: Continuity of Plurisubharmonic Envelopes in Non-Archimedean Geometry and Test Ideals (with an Appendix by José Ignacio Burgos Gil and Martín Sombra). Ann. Inst. Fourier, Grenoble 69, 5 (2019) 2331-2376. (arXiv)  (doi)

Burgos Gil, José Ignacio; Gubler, Walter; Jell, Philipp; Künnemann, Klaus; Martin, Florent: Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld). Algebraic Geometry 7 (2) (2020) 113–152.   (arXiv(doi)

Gubler, Walter; Künnemann, Klaus: Positivity properties of metrics and delta-forms. J. reine angew. Math. 752 (2019), 141-177.     (arXiv)   (doi)

Gubler, Walter; Künnemann, Klaus: A tropical approach to non-archimedean Arakelov theory. Algebra & Number Theory Vol. 11 (2017), No. 1, 77–180.   (arXiv)   (doi)

Bost, Jean-Benoît; Künnemann, Klaus: Hermitian vector bundles and extension groups on arithmetic schemes. II. The arithmetic Atiyah extension. In: From Probability to Geometry (I). Volume in honor of the 60th birthday of Jean-Michel Bismut (Xianzhe Dai, Rémi Léandre, Xiaonan Ma, Weiping Zhang, editors). Asterisque 327 (2009), 361-424.    (arXiv)

Bost, Jean-Benoît; Künnemann, Klaus: Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers. Advances in Mathematics 223 (2010), 987-1106.   (arXiv)    (doi)

Künnemann, Klaus; Tamvakis, Harry: The Hodge star operator on Schubert forms. Topology 41 no. 5 (2002), 945-960.    (arXiv)    (doi)

Künnemann, Klaus: Height pairings for algebraic cycles on abelian varieties. Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 503-523.    (numdam)  (doi)

Künnemann, Klaus: Uniformization of Shimura curves by the $p$-adic upper half plane. Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998), 121--128, Progr. Math., 187, Birkhäuser, Basel, 2000.

Künnemann, Klaus: Algebraic cycles on toric fibrations over abelian varieties. Math. Z. 232 (1999), no. 3, 427--435.    (doi)

Künnemann, Klaus: Projective regular models for abelian varieties, semistable
reduction, and the height pairing. Duke Math. J. 95 (1998), no. 1, 161--212.    (doi)

Künnemann, Klaus: The Kähler identity for bigraded Hodge-Lefschetz modules and its application in non-Archimedean Arakelov geometry. J. Algebraic Geom. 7 (1998), no. 4, 651--672.

Künnemann, Klaus: Higher Picard varieties and the height pairing. Amer. J. Math. 118 (1996), no. 4, 781--797    (doi)

Künnemann, Klaus; Maillot, Vincent:Théorèmes de Lefschetz et de Hodge arithmétiques pour les variétés admettant une décomposition cellulaire. Regulators in analysis, geometry and number theory, 197--205, Progr. Math., 171, Birkhäuser Boston, Boston, MA, 2000.  (doi)

Künnemann, Klaus: Some remarks on the arithmetic Hodge index conjecture. Compositio Math. 99 (1995), no. 2, 109--128.    (numdam)

Künnemann, Klaus: Arakelov Chow groups of abelian schemes, arithmetic Fourier
transform, and analogues of the standard conjectures of Lefschetz type. Math. Ann. 300 (1994), no. 3, 365--392.    (purl)

Künnemann, Klaus: On the Chow motive of an abelian scheme. Motives (Seattle, WA, 1991), 189--205, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.  (doi)

Künnemann, Klaus: A Lefschetz decomposition for Chow motives of abelian schemes. Invent. Math. 113 (1993), no. 1, 85--102.    (purl)

Künnemann, Klaus: Chow-Motive von abelschen Schemata und die Fouriertransformation. Schriftenreihe des Mathematischen Instituts und des Graduiertenkollegs der Universität Münster, 3. Serie, 6. Universität Münster, Mathematisches Institut, Münster, 1992. vi+53 pp.


Here you can find my papers on ArXiv.org.

Here you can find my papers on ORCID.org.


  1. HOMEPAGE UR

Faculty of Mathematics

Prof. Dr. Klaus Künnemann

Physik Aussen Quadr
CONTACT

Building M, Room 210
Phone 0941 943 2763

Assistant:
Andrea Kotzulla
Building M, Room 218
Phone 0941 943 2598