Zu Hauptinhalt springen

Dr. Gábor Balázs

Werdegang

Werdegang

Gábor Balázs was born in Branistea, Romania. After undergraduate studies at the Babes-Bolyai University (Cluj-Napoca, Romania), he received his Ph.D. in 2002 under the supervision of Prof. H. J. Breunig at the University of Bremen (Germany). From March 2003 to October 2005, he was a postdoctoral associate of Prof. M. Scheer in Karlsruhe and then in Regensburg (Germany). In October 2005, he joined Professors D. M. P. Mingos and J. C. Green at Oxford University for a postdoctoral stay as a scholar of the Alexander von Humboldt Foundation. This was followed by a postdoctoral stay in the group of Prof. M. Driess in Berlin (Germany). In 2008, he returned to Regensburg to join Prof. M. Scheer’s group as senior academic researcher. Since 2022, he is associated to the group of Prof. R. Wolf in Regensburg.


Forschung

Multiple bonds between heavy elements

Elements of the send row of the periodic table readily form multiple bonds. Prominent example are carbon and nitrogen, with a plethora of compounds containing multiple bonds. In contrast, the heavier elements are reluctant to form multiple bonds, and sterically demanding ligands must be used to protect the multiple bond. Complexes of group 6 metals with tris-amidoamine ligand are suitable for protecting M≡E (E = P, As, Sb) triple bonds. These complexes show a pronounced end-on reactivity, which we are investigating.

G. Balázs, M. Sierka, M. Scheer Angew. Chem. Int. Ed. 2005, 44, 4920, DOI: 10.1002/anie.200500781 ; G. Balázs, J. C. Green, D. M. P. Mingos Eur. J. Inorg. Chem. 2007, 2443, DOI: 10.1002/ejic.200700040 

Polyphosphorus ligands

Complexes containing polyphosphorus ligands exhibit diverse reactivity. They can react with nucleophiles, electrophiles, radicals, and are susceptible to reduction or oxidation. The nature of the products depends strongly on the polyphosphorus ligand itself, but also on the transition metal and auxiliary ligands.

S. Hauer, T. M. Horsley Downie, G. Balázs, K. Schwedtmann, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2024, 63, e202317170. DOI: 10.1002/anie.202317170

S. Reichl, E. Mädl, F. Riedlberger, M. Piesch, G. Balázs, M. Seidl and M. Scheer Nature Commun. 2021, 12, 5774. DOI: 10.1038/s41467-021-26002-7

A. Garbagnati, M. Seidl, G. Balázs, M. Scheer Chem. Eur. J. 2022, 28, e202200669. DOI: 10.1002/chem.202200669

Bonding analysis in polyhosphorus complexes by DFT

We use DFT calculations to elucidate the bonding situation in the synthesized compounds, to predict and rationalize the experimentally determined 31P NMR chemical shifts, and to elucidate the reaction mechanism.


Lehre

Wintersemester

  • Seminar „Analytische Methoden der Anorganischen Chemie“, Teil Heterokern NMR (53103)
  • Seminar zum Praktikum "Untersuchungsmethoden der anorganischen Chemie", Teil Heterokern NMR (53104)
  • Praktikum „Präparatives Kurspraktikum der anorganischen Chemie“ (53150)
  • Seminar zum „Präparatives Kurspraktikum der anorganischen Chemie“ (53151)
  • Fortgeschrittene Praktikum anorganische Chemie / organische Chemie“, Teil Metallorganische Chemie (53045)
  • Seminar zum „Fortgeschrittene Praktikum anorganische Chemie / organische Chemie“ (53046)

Sommersemester

  • Praktikum „Synthesetechniken“ (53097)
  • Seminar zum Praktikum „Synthesetechniken“ (53098)
  • Praktikum „Nanoscience“ (53094)
  • Praktikum „Fortgeschrittenen Praktikum Anorganische Chemie für MSc. Wirtschaftschemie“, Teil Metallorganische Chemie (53045)

Publikationen

Aufgewählte Publikationen

 

  • Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides
    S. Hauer, T. M. Horsley Downie, G. Balázs, K. Schwedtmann, J. J. Weigand, R. Wolf,
    Angew. Chem. Int. Ed. 2024, 63, e202317170. DOI:
    10.1002/anie.202317170
  • Reactivity of [Cp’’2Zr(η1:1-E4)] (E=P, As) towards Nucleophiles
    V. Heinl, M. Seidl, G. Balázs, M. Scheer
    Chem. Eur. J. 2023, 29, e202301016. DOI:
    10.1002/chem.202301016  
  • Actinide Pnictinidene Chemistry: A Terminal Thorium Parent-Arsinidene Complex Stabilised by a Super-Bulky Triamidoamine Ligand
    J. Du, G. Balázs, J. A. Seed, J. D. Cryer, A. J. Wooles, M. Scheer, S. T. Liddle
    Angew. Chem. Int. Ed. 2022, 61, e202211627. DOI: 10.1002/anie.202211627
  • Halogenation of the Hexaphosphabenzene Complex [(Cp*Mo)2(μ,η6:η6-P6)]: Snapshots on the Reaction Progress
    A. Garbagnati, M. Seidl, G. Balázs, M. Scheer
    Chem. Eur. J. 2022, 28, e202200669. DOI: 10.1002/chem.202200669
  • Pentaphosphaferrocene-mediated synthesis of asymmetric organo-phosphines starting from white phosphorus
    S. Reichl, E. Mädl, F. Riedlberger, M. Piesch, G. Balázs, M. Seidl and M. Scheer
    Nature Commun. 2021, 12, 5774. DOI: 10.1038/s41467-021-26002-7.
  • Utilizing the weak P−Cr bond in [{Cp*Cr(CO)3}2(μ,η1:1−P4)] for the generation of different P4 butterfly compounds
    R. Grünbauer, M. Seidl, G. Balázs and M. Scheer
    Z. Anorg. Allg. Chem. 2021, 647, 850-856. DOI: 10.1002/zaac.202000401.
  • The Parent Diarsene HAs=AsH as Side-on Bound Ligand in an Iron Carbonyl Complex
    R. Rund, G. Balazs, M. Bodensteiner and M. Scheer
    Angew. Chem. Int. Ed. 2019, 58, 16092-16096. DOI: 10.1002/anie.201909423.
  • Ring Contraction by NHC-Induced Pnictogen Abstraction
    M. Piesch, S. Reichl, M. Seidl, G. Balázs and M. Scheer
    Angew. Chem. Int. Ed. 2019, 58, 16563-16568. DOI: 10.1002/anie.201908397.
  • Reactivity of [{(N3N)WP] towards Gold(I) salts – Synthesis of [{(N3N)WP-AuCl] and [{(N3N)WP}2Au][pftb] (pftb = Al(OC(CF3)3)4)
    Gábor Balázs, Matthias Hautmann, Michael Seidl, Manfred Scheer
    Inorg. Chim. Acta. 2018, 475, 47 – 52. DOI: 10.1016/j.ica.2017.10.010
  • Actinide–Pnictide (An@Pn) Bonds Spanning Non-Metal, Metalloid, and Metal Combinations (An=U, Th; Pn=P, As, Sb, Bi)
    Thomas M. Rookes, Elizabeth P. Wildman, Gábor Balázs, Benedict M. Gardner, Ashley J. Wooles, Matthew Gregson, Floriana Tuna, Manfred Scheer, and Stephen T. Liddle
    Angew. Chem. Int. Ed. 2018, 57, 1332 –1336. DOI: 10.1002/anie.201711824
  • Electronic structure of linearly coordinated EQ complexes of the type [(N3N)W(EQ)] (N3N = N(CH2CH2NSiMe3)3; E = P, As, Sb, Bi; Q = O, S, Se, Te): A DFT Study
    Gábor Balázs, Jennifer C. Green, D. Michael P. Mingos
    Eur. J. Inorg. Chem. 2007, 2443–2453. DOI:
    10.1002/ejic.200700040 
  • Antimony-Tungsten Triple Bond: A Stable Complex with a Terminal Antimony Ligand
    Gábor Balázs, Marek Sierka, Manfred Scheer
    Angew. Chem. 2005, 117, 4999–5003; Angew. Chem. Int. Ed. 2005, 44, 4920–4924. DOI: 10.1002/anie.200500781
  • Neutron Diffraction Crystallography of meso–R(H)Sb–Sb(H)R and Reactions of R(H)Sb–Sb(H)R and RSbH2 [R = (Me3Si)2CH] Leading to Tungsten Carbonyl Complexes, Methylstibanes, and Antimony Homocycles
    Gábor Balázs, Hans Joachim Breunig, Enno Lork, Sax Mason
    Organometallics
    2003, 22, 576–585. DOI: 10.1021/om020754h


  1. Fakultät für Chemie und Pharmazie
  2. Institut für Anorganische Chemie

Arbeitskreis Prof. Robert Wolf

Dr. Gábor Balázs


Büro: 23.3.83
Labor: 22.3.11

Tel: +49 (0) 941 943-4419
Fax: +49 (0) 941 943-4439

Email:  Gabor.Balazs@ur.de