Zu Hauptinhalt springen
  1. Fakultät für Biologie und Vorklinische Medizin
  2. Faculty research

Seufert-Lab

 

Seufert191x191

Prof. Dr. Wolfgang Seufert
Tel. 0941/943-3162
wolfgang.seufert@ur.de
Raum: D3_2.313

Seufert



  • Ausgewählter Tab: Research
  •  We study mitosis and a new link of mRNA translation to cell proliferation control

    Activators of the ubiquitin ligase APC/C
    Cyclin-dependent kinases (Cdks) are key regulators of the eukaryotic cell division cycle. Through phosphorylation a various target proteins, cyclinB-Cdk1 promotes early, but blocks late events of mitosis. Therefore, cyclinB proteolysis is important for the completion of nuclear and cell division. Building on work on the ubiquitin system (EMBO J 9:543-50; EMBO J 9:4535-41; TiBS 15:195-8; Nature 373:78-81), we identified a substrate recognition subunit (Hct1, a.k.a. Cdh1) of the anaphase-promoting complex (APC/C) as a regulator of cyclin B proteolysis in budding yeast (Cell 90:683-93; EMBO J 20: 5165-75). Phosphorylation by cyclin B-Cdk1 kinase was found to inhibit the APC/C-Cdh1 ubiquitination pathway (Science 282:1721-4). This antagonism is a fundamental aspect of eukaryotic cell cycle control. Recent work indicated that proteolysis by the APC/C-Cdh1 pathway is restricted to the cell nucleus in budding yeast (MBoC 26:843-58). 
    Nuclear localization and APC/C binding of Cdh1 were found to be controlled through separate phosphorylation sites (MBoC 27:2198-212.

    Research 2016 1

    Yeast Cdh1 is activated in mitosis by Cdc14 phosphatase, a protein retained in the nucleolus for most of the cell cycle. Current efforts aim to better define the underlying mechanisms, among others by mapping domains of the Net1 nucleolar Cdc14 inhibitor and the related Tof2 protein (Curr Biol 18:1001-5).
     
    In another ongoing project we use confocal live cell imaging to study how proteins of the nucleolus are distributed during yeast mitosis. While the rDNA binding protein Fob1 segregated equally, RNA Pol I subunits and ribosome biogenesis factors predominated in the mother cell body, while other nucleolar proteins enriched in the daughter cell. We are various mutants affected in chromosome segregation or Pol I function to understand how this asymmetry in nucleolar protein segregation arises.
     

    Cdc123 required for translation initiation and cell cycle entry
    The second research focus in the lab concerns Cdc123 and the question how this protein controls entry into the cell division cycle. Cdc123 is conserved among eukaryotes and indispensable for cell viability, but its mechanism of action has remained unknown. Through genetic and biochemical analysis, we found that Cdc123 serves an unanticipated, essential role in the onset of protein synthesis by assembling the translation factor eIF2 (JBC 288:21537-46). This GTP-dependent carrier of the initiator-tRNA is well known also for its regulatory role in the stress-induced reprogramming of gene expression. In a recent collaborative effort, the 3D-structure of Cdc123 was solved (Structure 23:1596-608). The work indicated that Cdc123 is an ATP-binding protein of the ATP-grasp enzyme family. Building on the structural information, we are developing various approaches to work out the molecular mechanism of eIF2 assembly by Cdc123 and the putative regulation of the process. This project is supported by the Deutsche Forschungsgemeinschaft through SFB960.

    Research 2016 2

    Methods
    In our work we are using a range of methods including gene cloning and mutagenesis, PCR-mediated epitope tagging, fluorescence microscopy, flow cytometry, Y2H, Western and co-IP analysis, protein affinity purification, EMSA and ThermoFluor analysis.


  • Team
  • Team

    Prof. Dr. rer. nat.Wolfgang Seufert
    Lehrstuhl für Genetik

    Gebäude Westliche Naturwissenschaften D3_2.313
    Tel.  0941 943-3162 (Büro)
            0941 943-3075 (Sekretariat)
    wolfgang.seufert@ur.de

    Curriculum vitae

    Dr. rer. nat. Wolfgang Mages
    Akademischer Direktor

    z.Zt. 100% Freistellung für Tätigkeit im Personalrat

    Gebäude Westliche Naturwissenschaften D3_2.303
    Tel. 0941 943-3172
    wolfgang.mages@ur.de

    Foto Arlett

    Arlett Hirsch
    Sekretariat Lehrstuhl Genetik

    Gebäude Westliche Naturwissenschaften D3_2.311
    Tel. 0941 943-3075
    arlett.hirsch@ur.de

    wissenschaftliche Mitarbeiter

    Simone1 Dr. rer. nat. Simone Fabian
    Postdoc

    Gebäude Westliche Naturwissenschaften D3_2.317
    Tel. 0941 943-3174 Labor-Durchwahl 3177
    simone.fabian@ur.de

    Dr. rer. nat. Philipp Girke
    Postdoc

    Gebäude Westliche Naturwissenschaften D3_2.305
    Tel. 0941 943-3180 Labor-Durchwahl 3179
    philipp.girke@ur.de

    Dr. rer. nat. Lea Neumann-Arnold
    Postdoc

    Gebäude Westliche Naturwissenschaften D3_2.317
    Tel. 0941 943-3174 Labor-Durchwahl 3177
    lea.neumann-arnold@ur.de

    Sophia Pinz-90x100

    Dr. rer. nat. Sophia Pinz
    Postdoc

    Gebäude Westliche Naturwissenschaften D3_2.301
    Tel. 0941 943-3178 Labor-Durchwahl 3179
    sophia.pinz@ur.de

    Julia Simmler
    Doktorandin

    Gebäude Westliche Naturwissenschaften D3_2.317
    Tel. 0941 943-3174 Labor-Durchwahl 3177
    julia.simmler@ur.de

    technische Mitarbeiter

    Andrea Brücher
    Technische Assistentin

    Gebäude Westliche Naturwissenschaften D3_2.305
    Tel. 0941 943-3180 Labor-Durchwahl 3177
    andrea.bruecher@ur.de

    Antje Machetanz-Morokane
    Technische Assistentin

    Gebäude Westliche Naturwissenschaften D3_2.303
    Tel. 0941 943-3172 Labor-Durchwahl 3179
    antje.machetanz-morokane@ur.de

    Kerstin Forchheim
    Technische Assistentin

    Gebäude Westliche Naturwissenschaften D3_2.301
    Tel. 0941 943-3178 Labor-Durchwahl 3179
    kerstin.forchheim@ur.de

    Christina Hemauer
    Technische Assistentin

    Gebäude Westliche Naturwissenschaften D3_2.317
    Tel. 0941 943-3174 Labor-Durchwahl 3177
    christina.hemauer@ur.de

    Master und Bachelorstudenten

     

    Ehemalige Mitarbeiter

    Adelheid Weissgerber

    Technische Assistentin

    Bild1 Dr. rer. nat. Franziska Wojciech
    Vanselow-sven Dr. rer. nat. Sven Vanselow

    Dr. rer. nat. Katharina Hannig

    Dr. rer. nat. Nina Weber

    Dr. rer. nat. Sebastian Höckner
    Wolfgang Seufert Curriculum Vitae
    2004 Full Professor and Chair at the University of Regensburg, Department of Genetics
    1996 - 2004 Associate Professor at the University of Stuttgart,
    Institute of industrial Genetics
    1994 - 1996 Heisenberg-Fellow and Group Leader at the LMU Munich,
    Department of Genetics
    1993 - 1994 Research Fellow with Bruce Futcher
    at the Cold Spring Harbor Laboratory, New York, USA
    1988 - 1993 Post-Doc with Stefan Jentsch
    at the Friedrich-Miescher-Laboratory of the
    Max-Planck Society in Tübingen, Germany
    1985 - 1988 PhD and Diploma Studies with Walter Messer
    at the Max-Planck-Institute of Molecular Genetics, Berlin
    1981 - 1985 Studies of Biochemistry at the Freie Universität Berlin

    Degrees

    1995 Habilitation in Genetics at the LMU Munich
    1993 Habilitation in Biochemistry at the University of Tübingen
    1987 Doctor of Natural Sciences (Dr. rer. nat.) at the FU Berlin

    Awards

    1994 - 1996 Heisenberg-Fellowship
    by the Deutsche Forschungsgemeinschaft
    1993 - 1994 Research Fellowship
    by the Cold Spring Harbor Laboratory Association

  • Publications
  • Cardenal P C, Vandroux P, Neumann-Arnold L, Panvert M, Fagart J, Seufert W, Mechulam Y, Schmitt E. (2023) Binding of human Cdc123 to eIF2γ. J Struct Biol. 215(3):108006. PMID 37507029. doi: 10.1016/j.jsb.2023.108006 (PubMed)

    Girke P, Seufert W. (2023) Targeting of Hmo1 to subcompartments of the budding yeast nucleolus. Mol Biol Cell 34(3) (PubMed) (Mol Biol Cell)

    Pinz S, Doskocil E, Seufert W (2022) Thermofluor-Based Analysis of Protein Integrity and Ligand Interactions. Methods Mol Biol 2533. 247-257. PMID 35796993. doi 10.1007/978-1-0719-2501-9_15 (PubMed)

    Vanselow S, Neumann-Arnold L, Wojciech-Moock F, Seufert W (2022) Stepwise assembly of the eukaryotic translation initiation factor 2 complex. JBC 298(2) (PubMed) (JBC)

    Hannig K, Babl V, Hergert K, Maier A, Pilsl M, Schächner C, Stöckl U, Milkereit P, Tschochner H, Seufert W, Griesenbeck J (2019) An activator of RNA polymerase I transcription with conserved features from yeast to human. PLoS Genetics 15(2) (PubMed) (PloS Genet)
     
    Girke P, Seufert W. (2019) Compositional reorganization of the nucleolus in budding yeast mitosis. Mol Biol Cell 30(3) (PubMed) (Mol Biol Cell)
    A Highlights from MBoC Selection
     
    Höckner S, Neumann-Arnold L, Seufert W. (2016) Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1. Mol Biol Cell 27(14), 2198-2212. (PubMed) (Mol Biol Cell)
    A Highlights from MBoC Selection
    Prime Recommended in F1000Prime

    Yamano H: F1000Prime Recommendation of [Höckner S et al., Mol Biol Cell 2016 27(14):2198-2212]. In F1000Prime, 17 May 2019; 10.3410/f.726381183.793560345
     
    Panvert M, Dubiez E, Arnold L, Perez J, Mechulam Y, Seufert W, Schmitt E. (2015) Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique Features. Structure 23(9), 1596-1608. (PubMed) (Structure)

     
    Arnold L, Höckner S, Seufert W. (2015) Insights into the cellular mechanism of the yeast ubiquitin ligase APC/C-Cdh1 from the analysis of in vivo degrons. Mol Biol Cell 26(5), 843-858. (PubMed) (Mol Bio Cell)
     
    Perzlmaier AF, Richter F, Seufert W. (2013) Translation initiation requires cell division cycle 123 (Cdc123) to facilitate biogenesis of the eukaryotic initiation factor 2 (eIF2). J Biol Chem 288(30):21537-46. (PubMed) (J Biol Chem)
      
    Meitinger F, Richter H, Heisel S, Hub B, Seufert W, Pereira G. (2013) A safeguard mechanism regulates Rho GTPases to coordinate cytokinesis with the establishment of cell polarity. PLoS Biol. 11(2):e1001495. (PubMed) (PLoS Biol)
     
    Wittner M, Hamperl S, Stöckl U, Seufert W, Tschochner H, Milkereit P, Griesenbeck J. (2011) Establishment and maintenance of alternative chromatin states at a multicopy gene locus. Cell 145(4):543-54. (PubMed) (Cell)
     
    Geil, C, Schwab, M, Seufert, W. (2008) A nucleolus-localized activator of Cdc14 phosphatase supports rDNA segregation in yeast mitosis. Current Biology 18, 1001-05. (PubMed) (Current Biology)
     
    Dirscherl, G., Schwab, M., Seufert, W., König, B. (2008) Enhancing the separation of phosphorylated proteins in gel electrophoresis with dinuclear bispyridylmethylamine- tyrosine-acrylamide complexes. Inorganica Chimica Acta, (ScienceDirect)
     
    Willems, A.R., Schwab, M., Tyers, M. (2004) A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim. Biophys. Acta 1695, 133-170 (PubMed)
     
    Schwab, M., Tyers, M. (2001) Cell cycle. Archipelago of destruction. Nature 413, 268-269 (PubMed)
     
    Schwab, M., Neutzner, M., Möcker, D., Seufert, W. (2001) Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO J. 20, 5165-5175 (PubMed)
     
    Menssen, R., Neutzner, A., Seufert, W. (2001) Asymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis. Current Biology 11, 345-350 (PubMed)
     
    Zachariae, W., Schwab, M., Nasmyth, K., Seufert, W. (1998) Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex.  Science 282, 1721-1724 (PubMed)
     
    Schwab, M., Schulze Lutum, A., Seufert, W. (1997) Yeast Hct1 is a regulator of Clb2 cyclin proteolysis.  Cell 90, 683-693 (PubMed)
     
    Betting, J., Seufert, W. (1996) A yeast Ubc9 mutant protein with temperature-sensitive in vivo function is subject to conditional proteolysis by a ubiquitin- and proteasome-dependent pathway. J. Biol. Chem. 271, 25790-25796 (PubMed)
     
    Seufert, W., Futcher, B., Jentsch, S. (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78-81 (PubMed)
     
    Johnson, E., Bartel, B., Seufert, W., Varshavsky, A. (1992) Ubiquitin as a degradation signal. EMBO J. 11, 497-505 (PubMed)
     
    Seufert, W., Jentsch, S. (1992) In vivo function of the proteasome in the ubiquitin pathway. EMBO J. 11, 3077-3080 (PubMed)
     
    Seufert, W., McGrath, J.P., Jentsch, S. (1990) UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J. 9, 4535-4541 (PubMed)
     
    Seufert, W., Jentsch, S. (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9, 543-550 (PubMed)
     
    Seufert,W., Jentsch, S. (1990) Nucleotide sequence of two tRNAArg-tRNAAsp tandem genes linked to duplicated UBC genes in Saccharomyces cerevisiae. Nucleic Acids Res. 18, 1638 (PubMed)
     
    Seufert, W. (1990) Nucleotide sequence of the yeast SDH1 gene encoding a serine dehydratase homolog. Nucleic Acids Res. 18, 3653 (PubMed)
     
    Seufert, W., Lurz, R., Messer, W. (1988) A novel replicon occuring naturally in Escherichia coli is a phage-plasmid hybrid. EMBO J. 7, 4005-4010 (PubMed)
     
    Seufert, W., Dobrinski, B., Lurz, R., Messer, W. (1988) Functionality of the DnaA protein binding site in DNA replication is orientation dependent. J. Biol. Chem. 263, 2719-2723 (PubMed)
     
    Seufert, W., Messer, W. (1987) Start sites for bidirectional in vitro replication inside the replication origin, oriC, of Escherichia coli. EMBO J. 62469-2472 (PubMed)
     
    Seufert, W., Messer, W. (1987) DnaA protein binding to the plasmid origin region can substitute for primosome assembly during replication of pBR322 in vitro. Cell 48, 73-78 (PubMed)
     
    Seufert, W., Messer, W. (1986) Initiation of Escherichia coli minichromosome replication at oriC and protein n’ recognition sites.Two modes for initiating DNA synthesis in EMBO J.5, 3401-3406 (PubMed)


  • Teaching
  • Vorlesungen LSt Genetik
    Vst.-Nr. Veranstaltung Termine

    54119

     

     

    54120

    Genetik

     

     

     

    Übung zur Vorlesung

    Mi 09:00-10:00

    Do 09:00-11:00

    Mi 10:00-11:00

    54130 Einführung in die Biochemie, Mikrobiologie und Genetik

    Di 08:15-09:00

    Fr 08:15-09:45

    54402 Special lecture: Cell Cycle Control in Eukaryotes

    Wintersemester

    Do 08:30-10:00

    54650 Special lecture: Molecular Cell Biology

    Wintersemester

    Mo 18:00-19:30

    Praktika
    Praktika und deren Lerninhalte
    54123 Genetik - Wahlpflichtpraktikum

    Experimente zu Entstehung, Nachweis und Reparatur von Mutationen; Erbmusteranalyse; gezielte Deletion eines Gens; DNA-Präparation; heterologe Genexpression; PCR-vermittelte Genotypisierung

    Detaillierte Angaben im Praktikumsskript zugänglich in GRIPS

    https://elearning.uni-regensburg.de

    54131 Genetisch-Mikrobiologisches Praktikum für nicht vertieftes Fachstudium

    Mikrobiologie:
    Nährmedien, Anreicherung und Isolierung von Mikroorganismen (Herstellen von Kulturmedien, Sterilisieren im Autoklaven und im Schnellkochtopf, Herstellung von Agarplatten und Bouillonröhrchen); Isolierung von aeroben Bakterien aus der Luft, Anreicherung von anaeroben Bakterien aus Kartoffeln, Anreicherung photosynthetischer Bakterien aus Teichwasser, Isolierung von Leuchtbakterien;
    Grundlagen der Mikroskopiertechnik, einfache Färbungen (+ Gram Färbung);
    Wachstum von Mikroorganismen (Wachstumskurve mit / ohne Antibiotika); Antibiotika und Desinfektionsmittel (Plattendiffusionstest, Desinfektionstests; Joghurtherstellung; Demonstrationsversuche mit besonderen Archaeen und Bakterien; Physiologisch-, biochemische Tests zur Differenzierung von Bakterien (IMViC- Test; Enterotube, Nachweis von Exoenzymen);

    Genetik:
    Plasmid-Transformation (Einschleusen von Klonierplasmiden in Zellen von Escherichia coli, Selektionsmethoden, Isolierung von Plasmid-DNA aus Escherichia coli, Behandlung mit Restriktionsenzymen, Agarosegel-Elektrophorese); Regulation des Lactose-Operons (Induktion des Lactose-Operons auf Lactose-haltigen Nährmedien, Nachweis der Beta-Galactosidase-Aktivität), Genotypisierung (Isolierung von DNA aus Zellen der eigenen Mundschleimhaut, Polymerase-Kettenreaktion zur Amplifikation eines spezifischen DNA-Längenpolymorphismus, Nachweis der amplifizierten DNA durch Gelelektrophorese); Bakteriophagen (Wachstum von E. coli, Lyse durch den Bakteriophagen Lambda (λ) und Selektion λ-resistenter (λr) Mutanten, Bestimmung der Anzahl von Bakteriophagen-Partikeln in einem Plaque).

    54420 Forschungspraktikum: Genetik - Regulation der Zellteilung in der Hefe

    Mitarbeit in einem laufenden Forschungsprojekt.

    Siehe Webseite der Arbeitsgruppe - Prof. Seufert!

    54422 Forschungspraktikum: Genetik - Regulation der Zellteilung in Drosophila

    Mitarbeit in einem laufenden Foschungsprojekt zur Zellyzkluskontrolle in Drosophila.

    Siehe Webseite der Arbeitsgruppe - Prof. Sprenger!

    54424 Laborpraktikum: Genetik - Regulation der Zellteilung in der Hefe

    Participation in a scientific project.

    Methods: DNA cloning and mutagenesis, gene expression, Western analysis, co-immunoprecipitation, protein affinity purification, EMSA, Y2H, cell synchronization, flow cytometry, fluorescence microscopy, life cell imaging

    54425 Laborpraktikum: Genetik - Regulation der Zellteilung in Drosophila

    Students will participate in an ongoing project on cell cycle control in Drosophila. Typically, this involves overexpression or knock-down (RNAi) of cell cycle control proteins in tissue culture cells or Drosophila embryos and analysis of the cell cycle by flow cytometry or live cell imaging using confocal laser microscopy. Construction of modified DNA-plasmids encoding altered cell cycle proteins for use in the aforementioned experiments will be performed using molecular biology techniques.

    Seminare und deren Lerninhalte
    54414 Seminar zum Laborpraktikum: Regulation der Zellteilung in der Hefe
    Vorstellung von aktuellen Arbeiten aus dem Bereich Zellzykluskontrolle in Hefe
    54415 Seminar zum Laborpraktikum: Regulation der Zellteilung in Drosophilla

    Vorstellung von aktuellen Arbeiten aus dem Bereich Zellzykluskontrolle in Drosophila

    54427 Literature Seminar: Cell Cycle Control Mechanisms in Eukaryotes

    Literature Seminar to Lecture 54402

    Presentation of selected topics /papers


  • Contact
  • Prof. Dr. Wolfgang Seufert

    Genetics - Cell Cycle Control
    Institute for Biochemistry, Genetics and Microbiology
    University of Regensburg
    93040 Regensburg

    Tel.: 0941/943-3162
    wolfgang.seufert@ur.de

    Room D3_2.323
    Map of Biology Building

    google map position Google-map-genetic

    Lageplan Neubau Biologie (Westliche Naturwissenschaften)

    Genetik-lageplan

     

    Lageplan Räume Genetik

    Labor-overview

     

    How to get there

    The University has a good "How to get there" page:
    http://www.uni-regensburg.de/kontakt/lageplan/index.html

     

    Map of Biology Building

     

     

     

     

     

     

     

     

     



Research

 We study mitosis and a new link of mRNA translation to cell proliferation control

Activators of the ubiquitin ligase APC/C
Cyclin-dependent kinases (Cdks) are key regulators of the eukaryotic cell division cycle. Through phosphorylation a various target proteins, cyclinB-Cdk1 promotes early, but blocks late events of mitosis. Therefore, cyclinB proteolysis is important for the completion of nuclear and cell division. Building on work on the ubiquitin system (EMBO J 9:543-50; EMBO J 9:4535-41; TiBS 15:195-8; Nature 373:78-81), we identified a substrate recognition subunit (Hct1, a.k.a. Cdh1) of the anaphase-promoting complex (APC/C) as a regulator of cyclin B proteolysis in budding yeast (Cell 90:683-93; EMBO J 20: 5165-75). Phosphorylation by cyclin B-Cdk1 kinase was found to inhibit the APC/C-Cdh1 ubiquitination pathway (Science 282:1721-4). This antagonism is a fundamental aspect of eukaryotic cell cycle control. Recent work indicated that proteolysis by the APC/C-Cdh1 pathway is restricted to the cell nucleus in budding yeast (MBoC 26:843-58). 
Nuclear localization and APC/C binding of Cdh1 were found to be controlled through separate phosphorylation sites (MBoC 27:2198-212.

Research 2016 1

Yeast Cdh1 is activated in mitosis by Cdc14 phosphatase, a protein retained in the nucleolus for most of the cell cycle. Current efforts aim to better define the underlying mechanisms, among others by mapping domains of the Net1 nucleolar Cdc14 inhibitor and the related Tof2 protein (Curr Biol 18:1001-5).
 
In another ongoing project we use confocal live cell imaging to study how proteins of the nucleolus are distributed during yeast mitosis. While the rDNA binding protein Fob1 segregated equally, RNA Pol I subunits and ribosome biogenesis factors predominated in the mother cell body, while other nucleolar proteins enriched in the daughter cell. We are various mutants affected in chromosome segregation or Pol I function to understand how this asymmetry in nucleolar protein segregation arises.
 

Cdc123 required for translation initiation and cell cycle entry
The second research focus in the lab concerns Cdc123 and the question how this protein controls entry into the cell division cycle. Cdc123 is conserved among eukaryotes and indispensable for cell viability, but its mechanism of action has remained unknown. Through genetic and biochemical analysis, we found that Cdc123 serves an unanticipated, essential role in the onset of protein synthesis by assembling the translation factor eIF2 (JBC 288:21537-46). This GTP-dependent carrier of the initiator-tRNA is well known also for its regulatory role in the stress-induced reprogramming of gene expression. In a recent collaborative effort, the 3D-structure of Cdc123 was solved (Structure 23:1596-608). The work indicated that Cdc123 is an ATP-binding protein of the ATP-grasp enzyme family. Building on the structural information, we are developing various approaches to work out the molecular mechanism of eIF2 assembly by Cdc123 and the putative regulation of the process. This project is supported by the Deutsche Forschungsgemeinschaft through SFB960.

Research 2016 2

Methods
In our work we are using a range of methods including gene cloning and mutagenesis, PCR-mediated epitope tagging, fluorescence microscopy, flow cytometry, Y2H, Western and co-IP analysis, protein affinity purification, EMSA and ThermoFluor analysis.


Team

Publications

Teaching

Contact


  1. Fakultät für Biologie und Vorklinische Medizin
  2. Faculty research

Seufert-Lab

 

Seufert191x191

Prof. Dr. Wolfgang Seufert
Tel. 0941/943-3162
wolfgang.seufert@ur.de
Raum: D3_2.313