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Abstract. In contrast to other prominent models of belief change, models based
on epistemic entrenchment have up to now been applicable only in the context of
very strong packages of requirements for belief revision. This paper decomposes the
axiomatization of entrenchment into independent modules. Among other things it
is shown how belief revision satisfying only the ‘basic’ postulates of Alchourrén,
Gardenfors and Makinson can be represented in terms of entrenchment.
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1. Introduction

In the mid-1980s, two by now classical models for belief change
were introduced by Alchourrén, Gardenfors and Makinson (henceforth,
‘AGM’). Partial meet and safe contractions and revisions have, in their
general axiomatic characterization, six ‘basic’ properties, they satisfy
the so-called basic AGM postulates (also known as the basic G'drdenfors
postulates). If (and only if) special conditions are imposed—transitive
relationality in the case of partial meet contraction and continuing
up/down and virtual connectedness in the case of safe contraction—
we get two supplementary AGM postulates. These are the classical
results obtained by Alchourrén, Gardenfors and Makinson (1985) and
Alchourrén and Makinson (1985), and this two-level architecture has
served as an important frame of reference for many studies in the field
up to the present day.

Although partial meet contraction and safe contraction are very
different on the face of it, direct connections between the two kinds
of constructions were discovered shortly after their introduction (Al-
chourrén and Makinson 1986). This to some extent explained the
similarities in their logical properties.

A further deepening of the understanding of the relation between
partial meet contraction and safe contraction was provided by Sven
Ove Hansson (1994; 1999, Sections 2.8-2.9, 2.227-2.23%). He actually
studied a generalization of safe contraction that he termed ‘kernel con-
traction.” Using the concept of kernel contraction as a missing link,
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2 Hans Rott

Hansson obtained a number of beautiful results on the relationship
between partial meet and safe contraction as applied to belief bases,
i.e., sets of sentences that need not be logically closed. He showed
that even if the class of kernel contractions is restricted to ‘smooth’
or ‘saturated’ kernel contractions, it is strictly larger than the class
of partial meet contractions. For theories that are logically closed the
difference between these two classes of operations vanishes.

Ever since the idea came into being (Grove 1988, Géardenfors 1988,
Gérdenfors and Makinson 1988), entrenchment-based belief changes
have been regarded as the third ‘classical” AGM-style way of changing
beliefs. The situation with respect ‘epistemic entrenchment’ as a tool
for constructing belief changes, however, is quite different from the
situation with respect to partial meet and safe contraction.

First, as Hansson (1999, Sect. 2.10) has rightly pointed out, it is
very difficult to apply the theory of entrenchment to belief bases, i.e.,
sets of sentences that need not be logically closed. There are finite
representations of entrenchment relations, but it is problematic to apply
these structures directly to operations of belief change.! Philosophi-
cally, there is little motivation for insisting that entrenchment satisfy
certain logical constraints and at the same time renouncing to place
any logical constraints on the set of beliefs.

A second problem, again highlighted by Hansson, is that the stan-
dard use of entrenchment orderings in the construction of belief
contractions is dependent on these contractions’ satisfying the pos-
tulate of recovery—and this is arguably the most controversial AGM
postulate of all (see Hansson 1999, Sect. 2.3). One way of avoiding this
problem is to focus on operations of belief revision rather than belief
belief contraction, and this is what I will do in the following.

My main concern is with a third problem, however. Even in the
case of logically closed theories (so-called belief sets), entrenchment-
based belief change does not come with the neat separation of ‘basic’
and ‘supplementary’ conditions that we know from partial meet and
safe contraction. The entrenchment-based construction was introduced
1988 only for the rather special case where the full package of all eight
(‘basic” and ‘supplementary’) AGM postulates is satisfied or desired.

Later on various liberalizations of the strict logical requirements
for entrenchment relations were studied, with corresponding liberaliza-
tions of the AGM postulates (Lindstrém and Rabinowicz 1991, Rott
1992, 2001, Cantwell 2001). The liberalizations are not liberal enough,
however. There is no answer in the literature so far whether it is pos-

! See the ‘E-bases’ in Rott (1991) and the ‘ensconcements’ in Williams (1994),
as well as the critical remarks in Rott (2000a).
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Basic Entrenchment 3

sible to exactly mirror AGM’s distinction between basic and extended
conceptions of belief change operations with models using entrench-
ment relations. It would be desirable (and perhaps even necessary to
claim the status of a ‘classical’ AGM construction) to know whether
entrenchment-based belief change operations are applicable in the same
wide variety of contexts as partial meet and safe contraction. In this
paper, I provide a positive answer to this question and present a the-
ory of basic entrenchment that exactly fits basic belief change in the
AGM sense, thus showing that the applicability of entrenchment-based
constructions is indeed as wide as desired.

Ceteris paribus, a modelling will be considered the more natural,
the more flexibile and adaptable it is to different contexts and uses.
The present paper should thus help making entrenchment relations
recognized as a natural and fully workable tool for belief revision.

A final word by way of introduction. The term ‘entrenchment’ as
it is used here means something like ‘comparative retractability’ or
‘vulnerability’. If ¢ is at most as entrenched as @, this means that in
a case of doubt when one needs to give up either ¢ or v, it is not
more difficult or painful to give up ¢ than to give up 1. Belief revision
theorists have never claimed that this idea covers all the connotations
that the word ‘entrenchment’ may possibly carry. First and formost,
the word is obviously not used here in the sense made famous in phi-
losophy by Nelson Goodman (1973, Chapter 4); after all, Goodman
speaks primarily of the entrenchment of predicates, not of sentences.
Second, ‘entrenchment’ in our sense does not satisfy the expectations
of authors like Klee (2000) who argues that a scientific law ought to
be more entrenched than any of its instances. While the former may
certainly be called more important that the latter, it cannot be more
entrenched in the sense that is used here. It cannot be easier to give up
‘If Henry is a raven, he is black’ than to give up ‘All ravens are black’,
because as soon as the former is called into serious doubt, the latter
gets doubtful a fortiori.

2. The AGM postulates for belief revision

In order to make this paper self-contained, I now want review some
elements of the classical belief revision theory—the well-known AGM
postulates—and isolate three different concepts of coherence that they
can be seen as embodying. The presentation in this section follows that
of Rott (1999).

A belief set is a set of sentences of a given language £, usually con-
ceived as consistent, that is closed under logical consequences. We use -
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and Chn toindicate the consequence relation and operation governing L,
respectively, with the usual understanding that Cn(H)={¢: H - ¢}.
Without further indication, we will suppose that the logic is Tarskian
(reflexive, idempotent and monotonic), that it includes classical propo-
sitional logic, that it is compact, and that it satisfies the deduction
theorem. We reserve the letter ‘K’ for belief sets; ‘K|’ will be used to
denote the inconsistent set of all £-sentences.

Alchourrén, Gérdenfors and Makinson developed their theories
for belief revision functions that model the potential (non-iterated?)
changes of a given belief set. Such a function * is associated with a
belief set K and assigns, for each input sentence ¢, the revision K * ¢
of K that assimilates ¢. So formally a revision function * associated
with K is a function with domain £ and range IK (the set of all belief
sets).

A revision function * is usually supposed to satisfy certain condi-
tions. In the belief revision literature these conditions (and those that
will follow) are usually called ‘rationality postulates.” We use the AGM
labels to refer to them.

(1) Kx¢=Cn(K *¢) (Closure)
(+2) peKxo (Success)
(*5) If /¢, then K x¢ # K| (Consistency)
(6) If ¢ -1, then K+ ¢ = K x4 (Extensionality)

In the present paper, I shall treat these postulates as fundamental
conditions for belief revision. Roughly speaking, they say that revisions
should be made in a way that is successful (i.e., the input is actually
accepted in the posterior belief state—(*2)), inferentially coherent (i.e.,
the posterior belief set is logically closed and consistent—(*1) and (*5))
and content-driven (i.e., the result does not depend on variations in
the surface grammar of the input sentence—(6)). Let us call the set
consisting of (x1), (¥2), (¥5) and (*6) the set of basic postulates for
belief revision, and revision functions satisfying them basic revision
functions.?

2 In their classical paper, Alchourrén, Girdenfors and Makinson (1985) some-
times formally use revision functions * as binary functions taking various belief sets
as their first argument, but this is not in the spirit of what they actually do. I have
explained in Rott (1999) why I think that the conception of binary revision functions
is not appropriate as a general framework in which to study iterated belief change.

® Actually I do not think that (*#5) or its corresponding condition for entrench-
ment relations (called ‘Maximality’ below) are core conditions for the notions of
belief change and entrenchment. Compare, for the case of belief contractions, Rott
(1992) and (2001, especially Sections 6.1.2 and 8.2.5). However, dropping these con-
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Basic Entrenchment 5

Postulates (1) and (*5) taken together embody a notion of syn-
chronic coherence. Synchronic notions of coherence are important for
belief change, but if they were the only relevant notions of coherence,
the theory of belief revision (in the usual sense) would be deprived of
its very task. Theory change then gets reduced to theory choice: Just
the best, most coherent theory will be chosen, regardless of any pre-
decessor theories. Belief change on this account ceases to be grounded
on inter-theory relations between prior and posterior belief sets, but
is rather driven solely by the structure and properties of the posterior
theory. The theory chooser jumps to the theory with the best overall
characteristics that fits the data, without any commitment to his earlier
theories. Having said this, it may be somewhat ironic to call the collec-
tion consisting of (1), (¥2), (x¥5) and (*6) the set of basic postulates
for belief revision, but it does not seem to be misleading.

There are two more postulates that AGM also call ‘basic’, but are
somewhat more problematic than those in the first group. They relate
the revision function to the set K of currently held beliefs, and express
principles of conservatism or minimal change.

(*3) K+¢ C Cn(KU({¢}) (Ezrpansion)
(+4) If ~¢ ¢ K, then K C K x¢ (Preservation)

These postulates present substantial recommendations of how to
perform revisions by input sentences ¢ that are consistent with the
prior beliefs in K. Condition (*3) states that the agent should not
acquire more beliefs than are necessary on the strength of (x1) and
(+2); condition (*4) tells him not to give up more beliefs than are
necessary on the strength of (x5).* Postulates (x3) and (*4) are vac-
uously satisfied if the input ¢ is inconsistent with the belief set K
(i.e., if 7¢ € K). They may be regarded as restricted principles of
diachronic coherence—restricted, that is, to the consistent case. This
relational notion of coherence is very different from the synchronic one

ditions makes the technical treatment of limiting cases concerning the inconsistent
belief set K and maximally entrenched sentences (those that are as entrenched as a
tautology) a lot more complicated. Since the technical complications in my opinion
exceed the philosophical insight gained from relegating (*5) and Maximality to the
set of optional condidions, I have decided to treat them as ‘basic’ in the present
paper.

* The original AGM conditions actually have as the fourth condition some kind
of converse of (*3), viz.,

(+4") If ~¢ ¢ K, then Cn(K U {6}) C K *
The additional strength of (*4') over (*4), however, can be gained from conditions

(*1) and (*2). In order to avoid redundancies in the axiomatization, we use the more
elementary Preservation condition (*4).
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codified in (x1) and (*5) which pertains to the properties of a single
(posterior) belief state. The intuitive idea of diachronic coherence is
that the prior and the posterior belief state (or more generally, the
members in a sequence of belief states) somehow ‘hang together.” In
this sense, conservativity may be interpreted as a strategy aiming at
a certain kind of coherence. Let us call revision functions satisfying
(+3) and (x4) c-conservative (with respect to K, ‘c’ for ‘consistent’) or
faithful (to K).

Although (#3) and (#4) look very straightforward, it is not obvious
that they ought to be satisfied. It is characteristic of ‘abductive belief
revision’ as modelled by Pagnucco (1996) and Nayak (2000) that prop-
erty («3) does not hold. In the operation of ‘belief updates’ that are
occasioned by changes in the world, (*4) gets violated (Katsuno and
Mendelzon 1992). The same is true of the kind of ‘foundational belief
change’ advocated in Rott (2001, Chapter 5), and there are reasons
against identifying consistent revisions (‘additions’) with expansions if
the object language contains autoepistemic operators or conditionals
(Rott 1991). Further interesting arguments against Preservation are
put forward by Rabinowicz (1995) and Levi (1996, Chapters 2 and 3).

Finally, there are two ‘supplementary’ AGM postulates:

(*7) K+ (¢N1p) C Cn((K +o)U{v})
(*8) If =tp ¢ K x¢, then K« ¢ C K * (¢ A )

It has frequently been pointed out that (x7) implies (*3) and that
(#8) implies (x4)—provided that we assume that K = K % T.> But
saying this tends to obscure the fact that (¥3) and (#4) really deal with
something completely different from what (+7) and (*8) are about. The
former pair compares the prior and the posterior belief set in the case of
a revision by an input that is consistent with the prior state. The latter
pair compares potential revisions of a belief set by two different, but
logically related input sentences, to wit, ¢ and ¢ A1p. Seminal results in
AGM belief change theory have shown that (x7) and (8) are equivalent
to the existence of a well-behaved, ‘rationalizing’ structure that can
be ascribed to the agent’s mental state and is considered to govern
his changes of belief. Conditions (*7) and (*8) are about the agent’s
dispositions to change his beliefs in response to potential inputs. Let us
call (#7) and (*8) dispositional postulates, and revision functions sat-
isfying (+7) and (*8) dispositional revision functions. There are many

° If K is consistent, the identity K = K * T can itself be derived from (*3) and
(#4). An alternative approach, taking revision functions as the only primitives of
our modelling, would be to interpret the equation K = K * T as the definition of
the current belief set. In orthodox AGM theory, however, the equation is satisfied
only when K is consistent.
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variations on (x7) and (#8) in the literature, but only one of them
merits special attendance for the purposes of the present paper.

(*8c) If p € K+ ¢, then K¢ C K *(dAY)

This condition was first discussed in Makinson and Girdenfors
(1991). Given the basic postuates for revisions, it is a weakening of
AGM’s condition (*8). Conditions (*7) and (*8) have turned out to
be particularly strong dispositional postulates,® and it is perhaps fair
to say that just the dispositional postulates make the AGM theory of
belief revision powerful and interesting. However, it is important to see
they say nothing about any relation between prior and posterior belief
states.

®
(A
®1 P2 ®3 N "
. . > .[ > ' > . ------ ] .-‘-‘ ----- ’_.
PAY «1
synchronic diachronic
coherence: coherence: dispositional
(¥1) and (*5) (¥3) and (*4) coherence:

(*7), (*8) and (x8c)
Figure 1. Three types of coherence

Basic, c-conservative and dispositional revision functions, i.e., revi-
sion functions satisfying (*1) through (+8), are called AGM revision
functions (compare Figure 1). Notice that Alchourrén, Gardenfors and
Makinson impose no condition whatsoever that encodes a requirement
of minimal change for K * ¢ in relation to K for the (more interesting)
case where ¢ is inconsistent with K. It is a widespread myth that mini-
mal change principles provide the foundation of the existing theories of
belief revision, at least as far as the AGM tradition is concerned.” This
is already evident from the fact that the revision function which sets
K+ ¢ = Cn({¢}) in the inconsistent case (and K * ¢ = Cn(K U{¢})
in the consistent case) perfectly satisfies all the AGM postulates.

6 See Rott (2001, Chapter 4). As conditions constraining revisions by different
inputs, AGM’s conditions (*7) and (*8) are very powerful indeed. They essentially
imply that all beliefs in a belief set are comparable with one another in terms of
entrenchment.

" Boutilier (1996, p. 264) and Darwiche and Pearl (1997, p. 2) call ‘the principle
of informational economy’ or ‘the principle of minimal belief change’ the hallmark
of the AGM theory. They are echoing familiar prejudices here, promoted by AGM
themselves and repeated time and again in the literature. I have criticized the myth
of minimal change in belief revision theory in Rott (2000b).
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8 Hans Rott

We are now going to unpack and modularize the concept of epistemic
entrenchment in a way similar to the modularizing the concept of belief
revision.

3. Basic entrenchment

What is ‘epistemic entrenchment’®? Epistemic entrenchment is a binary
relation < over the sentences in £ that is supposed to constructively
govern changes of belief. But it is perhaps expedient to look first at
the converse, reconstructive interpretation of entrenchment. Given a
revision function *, an entrenchment relation < can be retrieved from
* by means of the following definition:®

(< from ) p< iff o¢ Kx-(pANtp) or Fp

This condition expresses essentially what we might call the meaning
of entrenchment. For the principal case, it says that ¢ is not more
entrenched than 1 in an agent’s belief state if and only if the revision
of the belief state occasioned by the information that not both ¢ and
1 are true leads to a state in which ¢ has been given up.

In order to appreciate the import of this concept, it is necessary
to understand that all basic revision functions can be represented as
revision functions based on an underlying relation of entrenchment.

OBSERVATION 3.1. If % is a basic revision function, i.e., * satisfies
(1), (%2), (*b) and (%6), and if < is the entrenchment relation over £
retrieved from * by means of (< from ), then * can be reconstructed
with the help of < in the following way:

(+ from <) YEK+$ Ml ~p<oDP or koo

Here < is the asymmetric part of <. Condition (* from <) says
that ¢ is in K * ¢ if the material conditional ¢ D 1 is strictly more

& Actually this name is a misnomer. The relations in question should really be
called relations of ‘doxastic entrenchment’. Logicians and researchers in Al have
no problems in talking about ‘knowledge’ bases containing ‘facts’ that may well be
false. For philosophers the situation is different. Plato, for one, laboured very hard,
especially in the Meno, the Republic and the Theaetetus, to explicate the important
differences between episteme and dozxa. I’ll continue, however, to use the sloppy way
of speaking in order to keep in line with by now widely used terminology.

° Essentially the same definition as applied to belief contraction is due to
Gérdenfors and Makinson (1988). It was transferred to belief revision, amongst
others, by Lindstrém and Rabinowicz (1991, p. 97) and Rott (1991, p. 144); also cf.
Hansson (1999, Section 3.9).—Constructive ‘positive’ and ‘negative’ interpretations
of entrenchment are investigated in Rott (2000a).
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Basic Entrenchment 9

entrenched than —¢, i.e., the negation of the input sentence. Another
way of putting things is to say that the material conditional is ‘robust’
with respect to its antecedent (cf. Jackson 1979, p. 569). If the input
sentence is inconsistent, everything may be accepted. When a revision
function * is defined from a relation < in £ with the help of (* from
<), we say that * is based on <, or that < determines .

Gérdenfors and Makinson (1988, Theorems 4 and 5) proved a result
analogous to Observation 3.1 in the much more restricted context of
AGM contraction functions satisfying eight postulates that are analo-
gous to (x1) — (*8). Rott (1991, Obs. 1) transferred their result to AGM
revision functions. The present result shows that only four of the eight
AGM postulates are necessary for the applicability of entrenchments in
revisions. In fact it is quite surprising to see how weak the properties
of a revision function % are that guarantee the existence of a relation
< that ‘rationalizes’ *. The situation of the approach using (* from
<) thus stands in sharp contrast to so-called partial meet contractions
where not only (x1) — (¥6), but also (x7) and weakened forms of (*8)
are necessary in order to secure relationality.'”

Unfortunately, (* from <) is not a very transparent condition.
And unfortunately, it is not possible to use a more perspicuous repre-
sentation and let K * ¢ be the set of logical consequences of {¢) € K :
—¢ < P} U {p}. It is true that K x ¢ is included the latter set, but
the converse inclusion in general fails. In contrast to the case of AGM
revision functions, if < is retrieved from a basic revision function *, it
does not follow from —¢ < @ that —¢ < ¢ D 9. So it does not follow
that ¢ is in K * .12

It is rather surprising how many properties of < can be derived if
only we know that the revision function * from which it is retrieved is
a basic belief revision function.

OBSFERVATION 3.2. (a) If * is a basic revision function satisfying
(1), (%2), (*5) and (*6), then the entrenchment relation < retrieved
from # satisfies the following conditions:

(Reflexivity) o< o

19 Cf. Alchourrén, Gérdenfors and Makinson (1985), Rott (1993), and the remarks
in Section 4 below.

11

11 As the proof of Theorem 3.1 shows, the following condition would equally well

Serve our purposes:
peEKxg iff ¢D 9 <PDY or F¢
Some people find this condition more transparent than (* from <).

12 Counterexample: Consider K = Cn({=p,¢}) and let * be a revision function
with K +p = On({p}) and K * =(—=p A ¢) = Cn({p, ¢}). There is nothing in (*1)
— (%6) that prevents such a function. For < retrieved from x, we have —p < ¢, but
neither =p < p D g nor ¢ € K * p.
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(Extensionality) If ¢ -k %) then :
¢ < x iff p<x, and x <¢ iff x <9

(Choice) oA < x iff p<PAxorp<PAY
(Maximality) If T<¢then Fo

(b) If * in addition satisfies (¥3), then < also satisfies
(K -Minimality) If ¢ K then ¢ <

(¢) If * in addition satisfies (¥4), then < also satisfies
(K-Representation) If ¢ € K and ¢ <1 then ¢ € K

(d) If * in addition satisfies (x7), then < also satisfies
(Continuing up) If ¢ <t A x then ¢ <o

(e) If * in addition satisfies (*8c), then < also satisfies
(Continuing down) If ¢ <) then ¢ A x < ¥

(f) If % in addition satisfies (*7) and (*8), then < also satisfies
(Transitivity) If ¢ <% and v < x then ¢ < y

Relations over £ satisfying Reflexivity, Extensionality, Choice and
Maximality will be called basic entrenchment relations. Reflexivity and
Extensionality need no explanation. The left-hand side and the right-
hand side of Choice are both ways of expressing that either ¢ or 1 is
given up in a situation in which at least one of ¢, ¥ and y needs to be
given up. Besides being based on (< from ), this reading derives from
the idea that the task of giving up a conjunction ¢ A1 is precisely the
same as the task of giving up at least one of ¢ and 1. The postulate
Choice receives its name from its interpretation as a central feature
of entrenchments in a framework using ‘syntactic’ choice functions. It
may also be read as saying that the entrenchment of a conjunction is as
firm as that of the least entrenched conjunct. Yet another motivation
can be drawn from a semantics based on choices between models:

¢<¢ it [=0] ny([~(eAP)])# D or Y([-(eA¥)])=0

Intuitively, this says that ¢ is not more entrenched than « if and only
if among the most plausible worlds that violate at least one of ¢ and
there is a world violating ¢, provided there are any such worlds. It is
now clear that Choice is immediately validated on this semantics. Both
the left-hand side and the right-hand side of Choice say that among
the most plausible worlds that violate at least one of ¢, ¢ and y, there
is a world violating either ¢ or .13

13 Both syntactic and semantic choice functions are studied in Rott 2001, Chapters
7 and 8.
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The condition of Maximality presented here is slightly stronger than
the condition with the same name in Gérdenfors and Makinson (1988)
in that it replaces their antecedent ‘if ¢ < ¢ for all b’ by the antecedent
ST < ¢7‘14

The condition of K-Minimality is only one half of Girdenfors
and Makinson’s condition with the same name. The condition of K-
Representation was first discussed in Rott (1992). Notice that every
entrenchment relation < vacuously satisfies both K-Minimality and
K-Representation with respect to the inconsistent belief set K = K.
If there is a consistent belief set K with respect to which < satisfies K-
Minimality and K-Representation, then K is uniquely determined as
K ={¢: L < ¢}. This solution is immediately derived by substituting
L for v in K-Minimality and K-Representation. It can be shown!®
that K = {¢: L < ¢} is logically closed, and since it does not contain
L, it is consistent. Applying (* from <), we find that it is identical
with K x T. — Thus the condition that < satisfies K-Minimality and
K-Representation with respect to a consistent belief set K can also be
expressed by saying that < satisfies

(L-Continuing up) If ¢ < L then ¢ <o
(L-Transitivity) If ¢ <t and ¢y < L then ¢ < L

Standard GM-relations < satisfy 1-Continuing up and L-
Transitivity.'® By convention, we define for each entrenchment
relation < the associated belief set K« = {¢ : L < ¢}. K< is a
non-empty, logically consistent and closed set of sentences.1”
Basic relations over L that also satisfy K-Minimality and K-
Representation may be called faithful with respect to K. While
Reflexivity, Extensionality and Choice are structural properties, Maxi-

4 Tt can easily be shown that for relations < obtained by (< from *) from a
revision function # satisfying (*1) — (%6) the following holds:

(a) If K £ K, then ¢ < Liff ¢ < for all .

(b) T<oiff ¥ <¢ for all .

15 Using Weak conjunctive splitting and Weak continuing down, see below.

16 Similar observations can be made with respect to revisions. Every revision
function * vacuously satisfies (*3) and (*4) with respect to the inconsistent belief
set K = L. If * satisfies (*3) and (*4) with respect to a consistent belief set K, then
K = K+ T. The condition that * satisfies (¥3) and (*4) with respect to a consistent
belief set K can also be expressed by saying that x satisfies

(T-%7) K+¢C(K+xT)+¢
(T-%8) If =¢ ¢ KT, then K x T C K * ¢
which turn out to be special cases of (+7) and (*8), by K ¢ = K + (T A ¢). This
is a good way of taking either < or * as primitive and the belief set K as a derived
entity.

17 See Lemma 3.3.
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mality, K-Minimality and K-Representation concern the limiting cases
of tautologies and non-beliefs.

The conditions of Continuing up and Continuing down were found to
be important for strict relations < in Alchourrén and Makinson (1985)
and Rott (1992).18

Faithful relations that in addition satisfy Transitivity are called
standard entrenchment relations. We shall shortly show that they
are precisely the entrenchment relations of Gérdenfors (1988) and
Gardenfors and Makinson (1988).19

Although the conditions for basic entrenchment are not at all
vacuous, they do not guarantee acyclicity.?’ But basic entrenchment
relations further satisfy a number of important properties.

LEMMA 3.3. Let < satisfy Reflexivity, Extensionality and Choice.
(a) Then it also satisfies the following properties:

(Conjunctiveness) o<y iff p<PpAY
(Conditionalization ) p< iff <D
(Connectedness) ¢<Yory <@
(GM-Dominance) If ¢ 1 then ¢ <
(GM-Conjunctiveness) p<PpAYporp < PAY
(Weak conjunctive splitting) If o Ay <y and xF oA

then ¢ < x or ¢ < x
(Weak continuing down) If ¢ <t and y F ¢ and

18 If < is the converse complement of <, and < is taken to be asymmetric, then
Continuing down for < becomes Continuing up for <, and vice versa. Alchourrén
and Makinson (1985, Obs. 4.3 and 5.3) proved that for ‘safe contraction’, each of
Continuing up and Continuing down entails a condition that corresponds to (7).
It is interesting to see that for entrenchment-based revision, the two conditions
have quite different effects. — The condition (*8) alone corresponds to the follow-
ing condition that has little intuitive appeal (cf. Rott 2001, Obs. 31, 32 and 51):

If¢g<yand o Ay <y then ¢ <P Ay

% The term ‘standard entrenchment’ was suggested in Rott (1992) where it is
contrasted with ‘generalized entrenchment’. Revision functions based on generalized
entrenchments characteristically satisfy some natural weakenings of the dispositional
postulates (+7) and (x8). But since generalized entrenchments are not required to
satisfy Maximality, they are incomparable in strength with the basic entrenchments
which are central for the present paper. Cf. footnote 3 above.

20 Counterexample: Consider K = Cn({p,q,7}) and let * be a revision function
with Kx=(pAq) = On({-p,q,r}), Kx=(gAr) = Cn({p, ¢, r}) and K+x=(pAr) =
Cn({p, ¢, —r}). There is nothing in (*1) — (*6) that excludes such a function. For <
retrieved from #*, however, we have p < ¢ < r < p.—Transitivity on the other hand
immediately entails acyclicity.
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oA E x then x <o

(Weak continuing up) If ¢ < and ¥ F y and
Xt ¢ D then ¢ <y
(Closure of K<) Ke=Cn(K<)
(b) If <in addition satisfies Maximality, then it also satisfies
(GM-Maximality) If v < ¢ for all ¥ then F ¢

(c¢) If <in addition satisfies K -Minimality and K'-Representation, then
it also satisfies

(GM-Minimality) If K # K, then:
o <pforaly iff ¢ K

(d) If < in addition satisfies Transitivity, then it also satisfies Contin-
uing up and Continuing down.

The relations considered in Lemma 3.3(a)-(c) are required to meet
far less demanding conditions than the entrenchment relations of
Gérdenfors and Makinson (1988) which can only be retrieved from
revision functions satisfying the full set of AGM postulates for revi-
sion. While basic entrenchment is in general not transitive, standard
entrenchment is. In fact Gardenfors and Makinson characterize their
entrenchment relations by the set consisting of GM-Dominance, GM-
Conjunctiveness, GM-Maximality, GM-Minimality plus Transitivity.
Let us call such relations GM-entrenchment relations. We have seen
that transitivity is the only GM-feature that basic entrenchments miss.
Conversely, we have:

OBSFERVATION 3.4. GM-entrenchment relations satisfy all condi-
tions of basic entrenchments.

Next we show that if a basic revision function * is determined by
some basic entrenchment relation, then this entrenchment relation is
precisely the one which is retrievable from .

OBSERVATION 3.5*' Let the entrenchment relation < satisfy Re-
flexivity, Extensionality and Choice, and let * be based on <. Then <
can be retrieved from * with the help of (< from *).

The final result of this section is as it were the converse of Ob-
servation 3.2. It shows that the constraints for basic entrenchment

21 Giardenfors and Makinson (1988, Theorems 4 and 5) proved an analogous re-
sult in the more restrictive context of AGM contraction functions and standard
entrenchment relations.

basicenz.tex; 10/04/2002; 18:12; p.13



14 Hans Rott

relations make sure that the revisions based on them satisfy the basic
postulates for revison functions. Further constraints on entrenchments
yield corresponding constraints on revision functions.

OBSERVATION 3.6. (a) If < is a basic entrenchment relation sat-
isfying Reflexivity, Extensionality, Choice and Maximality, then the
revision function * based on < satisfies (x1), (¥2), (x5) and (*6).

b) If < in addition satisfies K-Minimality, then * satisfies (*3).

¢) If <in addition satisfies /-Representation, then * satisfies (*4).

e) If <in addition satisfies Continuing down, then * satisfies (*8c).

(
(
(d) If < in addition satisfies Continuing up, then * satisfies (*7).
(
(f

)
) If <in addition satisfies Transitivity, then * satisfies (x7) and (*8).
We have now seen a bijective mapping between basic belief revision
functions and basic entrenchment relations. The most important and
original property characterizing basic entrenchment is a condition we
called ‘Choice’. Additional constraints can be matched one by one.
Two conditions for c-conservative revision functions (also considered
‘basic’ by AGM) correspond to two conditions for faithful entrenchment
relations. Three ‘supplementary’ conditions for dispositional revision
functions correspond to the conditions of Continuing up, Continuing
down and Transitivity for entrenchment, respectively. This picture
decomposes entrenchment-based belief change in a way that is sim-
lar to the way AGM decomposed partial meet contractions and safe
contractions in the 1980s.

In order to secure transitivity for an entrenchment relation retrieved
from a revision function *, the full power of postulates (x7) and (8)
is badly needed (Géardenfors and Makinson 1988). Given the failure of
transitivity for basic entrenchment relations, it is remarkable that con-
nectedness follows immediately from (< from #) if only * satisfies (1)
and (#5). In the context of non-strict relations of epistemic entrench-
ment, connectedness is a rather trivial condition, while transitivity is
a non-trivial and indeed very strong condition. This surprising finding
can be explained by reflecting on the meaning of the relation < as
given by (< from *). The point is that ¢ < ¢ does not simply mean
that @ is at least as entrenched as ¢, but rather that @ is at least as
entrenched or incomparable with ¢ (i.e., that ¢ is not more entrenched
than ). One reason for withdrawing ¢ when forced to give up either
¢ or 1 is that ¢ is less or equally entrenched as %, another reason is
given when one fails to find a unique standard for the comparison of
¢ and 1. Once the possibility of incomparabilities is recognized, both
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Basic Entrenchment 15

the connectedness and the failure of transitivity of < are very natural
features indeed.??

4. The use of relations in belief change operations

Partial meet contractions use choice functions (over sets of maximal
non-implying subsets), whereas safe contractions and entrenchment-
based contractions use relations (over sentences). It is well-known from
the theory of rational choice that some, but not all choice functions
can be ‘rationalized’ by a preference relation, in the sense that it is
exactly the ‘best elements’ according to the preference relation that
are in the chosen set. Such are the prescriptions of the method of
optimization (maximization or minimization). A common slogan in the
classical theory of rational choice has been rational choice is relational
choice.*

In a similar vein, Alchourrén, Gérdenfors and Makinson (1985) stud-
ied the impact of relations rationalizing their choice functions, finding
that for the rationalizability by a transitive preference relation their
two ‘supplementary’ postulates for belief change are necessary and
sufficient. But even rationalizability by a preference relation that is
not necessarily transitive puts rather heavy demands on belief change
functions.?*

Interestingly, as we know from Alchourrén and Makinson (1985)
and from the above reflections, preference relations can be used even
in the context of ‘basic’ belief change, if we turn to the case of safe
contractions and entrenchment-based contractions.

How can this be, given the wide-ranging parallels that can be uncov-
ered between partial meet and entrenchment-based operations??® The
reason is that in both safe and entrenchment-based belief change opera-
tions, the relations are not employed in a straightforward minimization

22 As a general property of orderings, transitivity is of course still to be regarded
as more natural than connectedness. This intuition can be complied with if one
works with strict entrenchment relations < that are the converse complements of
our relations <. For an explanation of the advantages of this transition, see Rott
(1992, p. 50).

2% Compare for instance Chernoff (1954), Herzberger (1973) and Sen (1997).

** Tor the case of logically finite belief sets, see Rott (1993).

2% Tt is actually shown in Rott (2001, Chapters 7-8) that constraints for choice
functions on the ‘semantic’ level (which corresponds to partial meet functions) al-
most always lead to the same belief-change behaviour as analogous constraints on
the ‘syntactic’ level (which corresponds to entrenchment-based functions, with en-
trenchments being interpreted as revealed preferences). In the only exceptional case,
the sytactic level yields an even stronger condition than the semantic level—adding
as it were a little to the puzzlement expressed by the above question.
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16 Hans Rott

or maximization process, but in more complicated processes. In the

partial meet operations of Alchourrén, Gardenfors and Makinson, they
26

are.
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Appendix: Proofs

Proof of Observation 3.1.

We show that (* from <) follows from (< from *) if * satisfies (*1),
(¥2), (*5) and (*6).

First notice that if < is retrieved from * with the help of (< from
k), then < is connected, by (k1), (¥4) and (x5). Now (< from *) gives
us

60 <6 i (956 ¢ K (62 ¢) A=) or b -0
By (x6), this is equivalent with

656 <6 il (6D ¢ K xdork o)

By (1) and (*2), ¢ D 9 ¢ K * ¢ is equivalent with ¢ ¢ K * ¢. Hence

6% < g iff (¢ K+ or b g)

By (*1) and (*2) again, we see that - =¢ implies ¢ € K * ¢, so we get

(6D L-port-¢) iff e Kx*¢
But since we already know that < is connected, we conclude that

(76 < @b and 6 £ ~0) or b ~¢) iff €K 4o

which is precisely (* from <). O

Proof of Observation 3.2.

(a) Let * be a revision function satisfying (x1), (¥2), (*5) and (*6),
and let < be retrieved from * with the help of (< from ).

(Reflexivity). ¢ < ¢ means that either ¢ ¢ K x =(¢ A @) or F ¢ A ¢.
Suppose that I/ ¢. Then, by (5) and (6), K*x—(¢pA¢p) = Kx—¢p # K.
By (%2), 7¢ € K * ¢, so by (x1), ¢ ¢ K + =(¢ A ¢), as desired.

(Extensionality) Let F (¢ < ). Let also ¢ < x,i.e., ¢ ¢ Kx=(pAY)
or F y. It follows from (x1) and (x6) that ¢» ¢ K * =(3» A x) or - x, so
P < x. Now let x < ¢, ie., x ¢ K (¢ A x) or F ¢. It follows from

(x6) that x ¢ K+ =(1 A x) or 1, s0 x < 2.

6 For more details on this, see Rott (2001, Section 8.7).
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Basic Entrenchment 17

(Choice) The left-hand side means that A ¢ Kx=((¢AYp)AY) or
F x. The right-hand side means that ¢ ¢ K * (¢ A (¥ Ax)) or ¥ Ax
orp ¢ K*=(pA(pAx)) or b ¢ A x. It follows immediately from
(x1) and (*6) that the right-hand side implies the left-hand side. For
the converse direction, let the left-hand side be satisfied. Suppose that
¢ € Kx=(pANPAY) and ¥ € K*=(pApAY) (this notation is well-defined,
thanks to (x6)). Hence by (1), ¢ A € K % (¢ A A x). Therefore
F x. Now suppose for reductio that I/ ) A x and I/ ¢ A x. It follows that
Y ¢ Ao A x. However, by (x1) we have ¢ Ap A x € K * (¢ AP A x),
contradicting (*2), (*1) and (*5).

(Maximality) That T < ¢ means that T ¢ K+ —=(T A¢) or - ¢. But
the former cannot be, by (*1). So F ¢.

(b) Now let  in addition satisfy (*3).

(K-Minimality) Assume that ¢ ¢ K. By (*3), K*x=(¢A) C Cn(KU
{=(¢ A1)}). But since ¢ ¢ K, we get from the fact that K is a belief
set that (=(¢ A1) D ¢ ¢ K either. So ¢ ¢ Cn(K U{~(éd A)}) and
O ¢ K +—=(d A1) Thus ¢ < .

(c) Now let  in addition satisfy (*4).

(K -Representation) Let ¢ € K and ¢ < 1. The latter means that
¢ ¢ K *=(¢ A1) or F 1. Suppose for reductio that ¢» ¢ K. Then,
since K is a belief set, 9 A1) ¢ K, so by (x4) K C K * =(¢ A ). So
since ¢ € K, we also have ¢ € K * =(¢ A ¢p). Thus it must be the
case that - 1. Hence v € K, by K’s being a belief set, and we have a
contradiction again.

(d) Now let  in addition satisfy (*7).

(Continuing up) Let ¢ < 1Ay, which means that ¢ ¢ K+=(pAPAY)
or F ¢ A x. We have to show that ¢ < ¢, that is, ¢ ¢ K * —=(¢ A )
or F . If = ¢ A x, then F 1, so this case is trivial. Let now ¢ ¢
K+ =(¢ A Ax). By (x1) and (6), this is equivalent with (¢ V =9V
X)D ¢ ¢ K+ (—¢V -V -yx). By (x1) again, this is equivalent with
¢ ¢ Cn((K*(—¢V-1YV-x))U{-¢V -1 Vx}). By (x7), it follows that
¢ K*((mpV-a1Vax)A(—¢V -1V x)), which means, by (x6), that
¢ ¢ K x—=(¢ A1), which is what we wanted to show.

(e) Now let  in addition satisfy (*8c).

(Continuing down) Let ¢ < v, which means that ¢ ¢ Kx=(¢Av) or
F 1p. We have to show that ¢ A x < 4, that is, pAx ¢ K *—(pAPAX) or
F1p. The case F 1 is trivial. Let now I/ ¢ and ¢ ¢ K * =(¢ A1), which,
by (6), is equivalent with ¢ ¢ K * ((=¢ V =p V =x) A (= V = V ).
Suppose for reductio that gAY € K*x=(pAPAX) = K*(=¢V -1V -y).
By (x1), then =¢ V =0 V x € K * (=¢ V =90 V =x). By (*8¢), then,
K*(=¢pVapVay) CK«((n¢V-9pVax)A(—¢V -V y)). Therefore,
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18 Hans Rott

we have ¢ ¢ K * (¢ V =1V —x). Using (x1), however, we see that this
contradicts our supposition that ¢ A x € K *(—¢V =1V =x), so we are
done.

(f) Finally, let * in addition satisfy (x7) and (*8). For this case
(or rather, the analogous case of AGM contraction functions, cf. Al-
chourrén, Gardenfors and Makinson, 1985, and Géardenfors, 1988) it is
proved in Gérdenfors and Makinson (1988, Theorem 5) that < satisfies
Transitivity. O

Proof of Lemma 3.3.

(a) Conjunctiveness. By Choice, ¢ < ¢ A1) is equivalent with ¢A ¢ <
1, which is, by Extensionality, equivalent with ¢ < 2.

Conditionalization follows from Conjunctiveness and Extensionality.

Connectedness. By Reflexivity, we have ¢ A ¢b < ¢ A 1p. Thus, by
Choice, either ¢ < AP A Y or ¥ < ¢ AP Arp. By Extensionality, this
means that either ¢ < ¢ A or ¢ < 9 A ¢, so by Conjunctiveness either
¢ < Yorp <o

GM-Dominance. Let ¢ I 1. Since ¢ < ¢ by Reflexivity, it follows
from Extensionality that ¢ < ¢ A 1. So by Choice ¢ A ¢ < 9, so by
Extensionality again ¢ < 1.

GM-Conjunctiveness follows from Connectedness and Conjunctive-
ness.

Weak conjunctive splitting. Let ¢ A < x and y F ¢ A 1. Choice
gives us either ¢ < Ay or v < ¢Ax. Hence, by, Extensionality, either
o< xory<x.

Weak continuing down. Let ¢ < %, ¢ A F x and y F ¢. By
Conjunctiveness, we have ¢ < ¢A1, so by Extensionality ¢ < (¢Ax)A.
Hence by Choice ¢ A (¢ A x) < 1, so by Extensionality y < .

Weak continuing up. Let ¢ < 4,9 F v and xy F ¢ D 4. Then by
Conjunctiveness, ¢ < ¢ A 1, so by Extensionality, ¢ < ¢ A x, thus by
Conjunctiveness again, ¢ < y.

Closure of K<. Suppose that {¢1,...,0,} F ¢ and ¢ ¢ K. =
{¢p : L < ¢} By Connectedness, v < L. Then by Extensionality,
P < (p1 A...A¢p) A L. Then by Choice, ¥ A (¢p1 A ... A ¢,) < L.
Then by Extensionality again, ¢1 A ... A ¢, < L. Hence, by repeated
application of Choice, ¢; < L, i.e., ¢; ¢ K< for some ¢.

(b) GM-Maximality follows immediately from Maximality.

(¢) GM-Minimality. One half follows immediately from K-
Minimality. For the other half, let K # K, and ¢ < @ for all .
Assume for reductio that ¢ € K. Choose some % that is not in K. Such
a 1 exists since K # K. By K-Representation, we get that ¢ £ .,
contradicting one of our assumptions.
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(d) Both Continuing up and Continuing down follow immediately
from GM-Dominance and Transitivity. O

Proof of Observation 3.4.

Reflexivity follows from GM-dominance. Extensionality follows from
GM-dominance and Transitivity. K-Minimality follows from GM-
Minimality. Since ¢ F T, Maximality follows from GM-Maximality,
GM-Dominance and Transitivity. i-Representation follows from GM-
Minimality and Transitivity. The proof for Choice is the only one that
is not immediate; we need to show that

pANY < x il o< YPAxorp <oAX

From left to right. Suppose that ¢ A ¢ < y. By GM-Conjunctiveness,
either ¢ < ¢ A b or ¥p < ¢ A 1. Suppose the former (the other case is
analogous). By GM-Dominance ¢ A ¢ < 1, so by Transitivity ¢ < .
Since ¢ A 1 < v, it also holds, by Transitivity, that ¢ < y. But either
P <A xor xy <Ay, by GM-Conjunctiveness. So in any case, by
Transitivity again, ¢ < ¥ A Y.

From right to left. Suppose that either ¢ < ¥ Ay or b < @A yx. Suppose
the former (the other case is analogous). By GM-Dominance, it holds
that 9 A < ¢ and ¥ A x < x. In sum, then, gAY <o <P A Y < N,
giving us ¢ A » < y by twofold application of Transitivity. O

Proof of Observation 3.5.

We show that (< from *) follows from (* from <) if < satisfies
Reflexivity, Extensionality and Choice. We know from Lemma 3.3 that
< also satisfies GM-Dominance and Conjunctiveness.

( from <) gives us
peKx=(pn) iff (m=(opAY)<a=(pAY)V ¢ and
(P APV L am(@AP)) or aa(d A))
Hence, by Extensionality,

6 K+(6NE) iff (AU <dandd gL dAp)ort oA
or equivalently

ot Kx=(pN) iff (9N Lporg<dAY)and i oAp)

But ¢ A ¢ £ ¢ is impossible, by GM-Dominance, and ¢ < ¢ A 2 is
equivalent with ¢ < %, by Conjunctiveness. A simplified formulation
thus is

o ¢ Ke—(oAv) il &< andffond
Moreover, = ¢ A 1p implies = ¢ which in turn implies ¢ < i, by GM-
Dominance. Hence we have:

(6¢ K x—~(éAw)ork oAp) iff ¢< o

This, however, is just (< from *). O

Proof of Observation 3.6.
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(a) Let < satisfy Reflexivity, Extensionality, Choice and Maximality,
and let * be based on <. We know from Lemma 3.3 that it follows
that < satisfies Connectedness, Weak conjunctive splitting and Weak
continuing down. If F =¢, then K x ¢ = K by (x from <), and
conditions (*1) — (%6) are all satisfied. So let I/ —=¢ in the following
proofs of (a), (b) and (c).

(*1). We prove that K * ¢ = Cn(K * ¢) by first showing that A
¢ is closed under conjunctions and secondly showing that K * ¢ is
closed under singleton entailments. The claim then follows from the
compactness of Cn. We first show that

If¢pe Kx¢and y € K x¢, then v A xy € K x ¢

Since we have assumed that I/ =¢, the antecedent means that =¢ < ¢ D
¥ and =¢ < ¢ D x, and the consequent means that —¢ < ¢ D (¥ A x).
Since < is connected, what we need to prove is that ¢ O (¢ A x) < ¢
implies that either ¢ D ¥ < =¢ or ¢ D x < —¢ is true. But this follows
directly from Extensionality and Weak conjunctive splitting. Next we
show that

Ifye Kx¢and ¥+ x, then y € K x¢

Since I/ —¢, the antecedent means that =¢ < ¢ D 1 and ¥ F x, and
the consequent means that —¢ < ¢ D y. By Connectedness, we need to
prove that ¢ F x and ¢ D y < —¢ taken together imply ¢ D i < —¢.
But since ¢ F y implies ¥ A x F ¢ D ¥ = ¢ D x, this follows directly
from Weak continuing down.

(%2). For ¢ € K * ¢, we need to show that =¢ < ¢ D ¢ is true. But
by Connectedness and Extensionality, this means that T £ —¢. Since
we are assuming that I/ =¢, this follows from Maximality.

(#5). We still assume that b/ —¢. We want to show that K'+¢ # K.
Thanks to (+1) which we have already verified, it suffices to show that
1L ¢ K * ¢. This means we need to show that I/ =¢ and —¢ £ ¢ D L.
The former is true by hypothesis. The latter means, by Extensionality,
that =¢ £ —¢. But this follows from Reflexivity.

(%6). Let ¢ 4 1. We need to show that —¢ < ¢ D x if and only
if = < ¢ DO y. Or equivalently, that ¢ D y < =¢ if and only if
1 D x < —p. This follows from Extensionality.

(b) Now let < in addition satisfy K-Minimality.

(#3). In order to show that K * ¢ C Cn(K U {¢}), assume that
¥ € K * ¢, that is, that either F —¢ or =¢ < ¢ D 1. We need to show
that ¢ € Cn(K U {¢}), i.e., since K is a belief set, that ¢ D 1 € K.
Since we have assumed that I/ =¢, we know that ¢ D 1 £ —¢. Hence,
by K-Minimality, ¢ D ¢ € K, as desired.

(c) Now let < in addition satisfy K-Representation.
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(x4). Let =¢ ¢ K. In order to show that K C K * ¢, assume that
¥ € K. We need to show that either F =¢ or =¢ < ¢ D . Since we
are assuming I =¢, we show the latter. Suppose for reductio that it is
false, that is, by Connectedness, that ¢ D 1 < —¢. Since ¢ € K, we
know from the fact that K is a belief set that ¢ D ¥ € K. Hence, by
K-Representation, ~¢ € K as well, contradicting our hypothesis.

(d) Now let < in addition satisfy Continuing up.

(7). Let x € K # (¢ A1), which means that (¢ Av)) < (¢A¥) D x
or F =(¢ A ). We want to show that (K * ¢) U {¢} F x, i.e., by
the deduction theorem for - and (*1), ¢ O x € K * ¢, which again
means, by (x from <), =¢ < ¢ D (¢ D x) or F —¢p. If F =(o A ),
then (K * ¢) U {¢} is inconsistent, by (x1) and (*2), so the claim is
trivial. Let therefore t/ =(¢ A ¢) and =(¢p A ) < (¢ A1P) D x. Suppose
for reductio that I/ =¢ and ¢ D (¢ D x) < —¢, or equivalently, by
Extensionality, (¢ A ) D x < (7¢ V =) A (=¢ V ¢), By Continuing
up and again Extensionality, this implies that (¢ A1) D x < = (P A ),
and we have found a contradiction.

(e) Now let < in addition satisfy Continuing down.

(+8¢). Let 1 € K x ¢ and x € K #* ¢, which means that —¢ < ¢ D 9
or F —¢, as well as ~¢p < ¢ D y or F —¢. We want to show that
X € K+(¢pA1), which means that =(¢AY) < (@A) D yor k- —(pAp). If
F =g, then F ~(¢ A1), so this case is trivial. Let now I/ =¢, =¢ < ¢ D
and ¢ < ¢ D y.

Suppose for reductio that (¢ A1) D x < =(p A ) and I =(o A ).
By Extensionality, the former is the same as =¢ vV =0 V x < =g V =1,
By Continuing down, we can conclude that (=g V) A (= V-9V x) <
=¢V —1p, and thus, by Extensionality, (n¢V¥)A(=¢Vy) < ¢V -1, By
Conjunctiveness, we get (=pV)A(=pV ) < (mpVa)A((mpV)A(—pV
X)), and, by Extensionality again, (m¢V)A(=¢V x) < =¢. By Choice,
it follows that either (=¢V1) < (mpVx)A-@or (mpVY) < (7pVY)A-P.
By Extensionality, this means that either ¢ D 1 < ¢ or ¢ D x < =9,
which contradicts the above assumption that both —¢ < ¢ D % and
- < ¢ D Y, so we are done.

(f) (#7) and (#8). Finally let < in addition satisfy Transitivity.
Hence, by Lemma 3.3, < satisfies all the conditions of Gardenfors and
Makinson (1988). In Theorem 4 of this paper it is shown that  satisfies
(%7) and (*8) (or rather, that the corresponding contraction func-

tion satisfies corresponding postulates (=7) and (=8), cf. Alchourrén,
Gérdenfors and Makinson, 1985, and Géardenfors, 1988). O
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