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Computational Nanoscience: Solution to Exercise Sheet No. 2

Exercise 2.1: Normalization and antisymmetry of Slater determinants

The single particle orbitals are orthonormal, i.e.∫
d3rψ∗i (r)ψ j(r) = δi j

The normalisation of the Slater determinant is evaluated by the resolution of identity in the many-particle
basis

⟨ΨSD|ΨSD⟩ =
1

N!

∫
d3x1

∫
d3x2... ⟨ΨSD|x1x2...⟩ ⟨...x2x1|ΨSD⟩ =

=
1

N!

∑
σ,σ′

sgn(σ)sgn(σ′)
∫

d3x1

∫
d3x2...

∏
i

ψ∗σ(i)(xi)ψσ′(i)(xi) =

=
1

N!

∑
σ,σ′

sgn(σ)sgn(σ′)
∏

i

δσ(i),σ′(i) =
1

N!

∑
σ

(sgn(σ))2 = 1 ,

since the number of permutations of N indices is N! and (sgn(σ))2 = 1.
For the second identity, we can directly use the Leibniz formula

ΨSD(x1, ..., xi, ..., x j, ..., xN) =
∑
σ

sgn(σ)
N∏

k=1

ψσ(k)(xk)

We recognize that swapping positions xi and x j leads to a different permutation numbering - we effec-
tively do one extra swap, which means that an extra sign is introduced in the determinant formula, as all
permutations change parity. Hence

ΨSD(x1, ..., x j, ..., xi, ..., xN) =
∑
σ′

sgn(σ′)
N∏

k=1

ψσ′(k)(xk) =

=
∑
σ

−sgn(σ)
N∏

k=1

ψσ(k)(xk) = −ΨSD(x1, ..., xi, ..., x j, ..., xN)

Exercise 2.2: Hartree energy

(a) Integrating the electron density leads to∫
d3r n(r) =

N∑
i=1

∫
d3r |ψi(r)|2 =

N∑
i=1

1 = N ,

since the single particle wavefunctions ψi(r) are normalized.
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(b) The formula says that in Hartree-Fock, the electron density can be computed as sum of the densities
of the spatial part of spin orbitals. That looks reasonable since in quantum mechanics, the total
density of non-interacting particles is the sum of the densities of the individual particles.

(c) We have

EH =
e2

2

N∑
n=1

N∑
m=1

(ψnψn|ψmψm) lecture notes
=

e2

2

N∑
n=1

N∑
m=1

"
ψn(r)ψn(r)ψm(r′)ψm(r′)

|r − r′|
d3r d3r′

=
1
2

"
n(r) n(r′)
|r − r′|

d3r d3r′,

where we used (ψi(r))2 = |ψi(r)|2 because we assumed real-valued ψi(r) according to the lecture
notes.

(d) The Hartree energy is the classical electrostatic interaction energy of a charge density with itself.

(e) Short answer: The integral is running over r and r′ and therefore double counts all contributions:
The charge density in the volume d3r interacts with the charge density in d3r′ and vice versa. The
factor 1

2 takes care to avoid the double counting. This can be quickly seen for the electron density
n(r)= δ(r− r1)+ δ(r− r2):

EH =
e2

2

"
n(r) n(r′)
|r − r′|

d3r d3r′ =
e2

2

"
(δ(r− r1)+ δ(r− r2))(δ(r′ − r1)+ δ(r′ − r2))

|r − r′|
d3r d3r′

=
e2

2

(
1

|r1 − r2|
+

1
|r2 − r1|

)
+ combinations r1/r1 and r2/r2 (interaction of electrons with themselves)

=
e2

|r1 − r2|
+ combinations r1/r1 and r2/r2 (interaction of electrons with themselves)

Without the factor 1
2 , the electrostatic interaction between the electron at r1 and at r2 would not be

the familiar Coulomb interaction of two point charges.

Additional information: If we would have two different charge densities n1(r) and n(r2), then the
interaction energy is

E =
"

n1(r) n2(r′)
|r − r′|

d3r d3r′ .

However, if we have n1(r)= n2(r), a factor 1
2 appears. This factor can be understood, when slowly

building up the charge density from zero as n(r)dα with
∫ 1

0
n(r)dα= n(r). If we have two charge

densities, this building up reads

E =

1∫
α=0

"
(n1(r) dα) n2(r′)
|r − r′|

d3r d3r′ .

In case we have the same charge density n1(r)= n2(r), and we add charge density n1(r)dα to the
system, we need to take into account, that there is only a charge density αn2(r) already present,
0≤α≤ 1 and not the full n2(r). So, we have for the interaction energy

E =

1∫
α=0

"
(n(r) dα) (α n(r′))

|r − r′|
d3r d3r′ =

1∫
0

αdα
"

n(r) n(r′)
|r − r′|

d3r d3r′ =
1
2

"
n(r) n(r′)
|r − r′|

d3r d3r′ .



(f) No, consider a hydrogen atom with a single electron. Then, the electrostatic electron-electron inter-
action is zero but the Hartree energy is non-zero.

(g) No. The short answer is that a large fraction of the correlation energy is electron-electron interaction
that is not included in EH + Ex. In more detail: As introduced in the lecture, we have

E = EHF + Ec (1)

where E denotes the groundstate energy, ĤΨ= EΨ (Ψ: ground state wavefunction), EHF the Hartree-
Fock energy and Ec < 0 the correlation energy. We can now decompose (neglecting nuclei-nuclei
interaction)

E = T exact + Eexact
Ne + Eexact

ee (2)

with T exact = ⟨Ψ|T̂ |Ψ⟩, Eexact
Ne = ⟨Ψ|V̂Ne|Ψ⟩ and Eexact

ee = ⟨Ψ|V̂ee|Ψ⟩. We can also decompose the Hartree-
Fock energy into

EHF = T HF + EHF
Ne + EHF

ee (3)

where we have T HF = ⟨ΨHF
SD|T̂ |Ψ

HF
SD⟩, EHF

Ne = ⟨Ψ
HF
SD|V̂Ne|Ψ

HF
SD⟩ and EHF

ee = ⟨Ψ
HF
SD|V̂ee|Ψ

HF
SD⟩ = EH + Ex. With

Eq. (1), (2) and (3), we have

T exact + Eexact
Ne + Eexact

ee = T HF + EHF
Ne + EH + Ex + Ec (4)

⇒ Eexact
ee = T HF − T exact + EHF

Ne − Eexact
Ne + EH + Ex + Ec . (5)

So, in general, we have that the electron-electron interaction is not equal to EH + Ex.

For the special case of a hydrogen atom, we have T HF = T exact, EHF
Ne = Eexact

Ne and Ec = 0 and hence
Eexact

ee = EH + Ex.

For many molecules and solids, we have T HF ≈ T exact and EHF
Ne ≈ Eexact

Ne such that

Eexact
ee ≈ EH + Ex + Ec . (6)

From upper equation it is apparent that the correlation energy contains electron-electron interaction
that is not included in Hartree-Fock.

(h) We insert the definition of the Slater determinant in the definition of the density. Further, we assume
real-valued spin orbitals (makes the notation easier) and obtain

n(r) = N
∫

dσ d3x2 d3x3 . . . d3xN |Ψ(x, x2, x3, . . . , xN)|2

=

∫
dσ d3x2 d3x3 . . . d3xN

1
(N − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
ψ1(x) ψ2(x) . . . ψN(x)
ψ1(x2) ψ2(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
ψ1(x) ψ2(x) . . . ψN(x)
ψ1(x2) ψ2(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∫
dσ d3x2 d3x3 . . . d3xN

1
(N − 1)!

(
ψ1(x)

∣∣∣∣∣∣∣∣∣∣
ψ2(x2) . . . ψN(x2)
...

. . .
...

ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣ + ψ2(x)

∣∣∣∣∣∣∣∣∣∣
ψ1(x2) ψ3(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ3(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
+ . . .

) (
ψ1(x)

∣∣∣∣∣∣∣∣∣∣
ψ2(x2) . . . ψN(x2)
...

. . .
...

ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣ + ψ2(x)

∣∣∣∣∣∣∣∣∣∣
ψ1(x2) ψ3(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ3(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣ + . . .
)



We have used for the last line the Laplace expansion of the first row of the determinant. Due
to the orthogonality of Slater determinants, we have that the terms from the determinant product(
. . .

)(
. . .

)
only give non-vanishing results if the determininants are the same:

n(r) =
∫

dσ d3x2 d3x3 . . . d3xN
1

(N − 1)!

(
|ψ1(x)|2

∣∣∣∣∣∣∣∣∣∣
ψ2(x2) . . . ψN(x2)
...

. . .
...

ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
ψ2(x2) . . . ψN(x2)
...

. . .
...

ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
+ |ψ2(x)|2

∣∣∣∣∣∣∣∣∣∣
ψ1(x2) ψ3(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ3(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
ψ1(x2) ψ3(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ3(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣ + . . .
)

We carry out the integration over the spin coordinate σ with ψn(x)=ψn(r) f (σ) with
∫

dσ| f (σ)|2 = 1
and use normalization of the Slater determinant,

n(r) = |ψ1(r)|2
∫

d3x2 d3x3 . . . d3xN
1

√
(N − 1)!

∣∣∣∣∣∣∣∣∣∣
ψ2(x2) . . . ψN(x2)
...

. . .
...

ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
1

√
(N − 1)!

∣∣∣∣∣∣∣∣∣∣
ψ2(x2) . . . ψN(x2)
...

. . .
...

ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
+ |ψ2(r)|2

∫
d3x2 d3x3 . . . d3xN

1
√

(N − 1)!

∣∣∣∣∣∣∣∣∣∣
ψ1(x2) ψ3(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ3(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
×

1
√

(N − 1)!

∣∣∣∣∣∣∣∣∣∣
ψ1(x2) ψ3(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ3(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
+ . . .

= |ψ1(r)|2 + |ψ2(r)|2 + . . . =
N∑

n=1

|ψn(r)|2 .

Exercise 2.3: Hartree-Fock for bond length and lattice constant

(a) Compute the Hartree-Fock energy for O2 for various distances of the nuclei. The distance with the
lowest Hartree-Fock energy is the Hartree-Fock equilibrium bond distance of O2.

(b) Similar as O2: Compute the Hartree-Fock energy for different lattice constants. The lattice constant
with the lowest Hartree-Fock energy is the Hartree-Fock equilibrium lattice constant.


