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Exercise 8.1: Geometry

Geometry for 3Å distance:
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Geometry for 7Å distance:
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Exercise 8.2: CP2K Input file

&GLOBAL

PROJECT Exc_7

RUN_TYPE RT_PROPAGATION

&END GLOBAL

&MOTION

&MD

ENSEMBLE NVE

TEMPERATURE 300

STEPS 1000

TIMESTEP 0.1

&END MD

&END MOTION

&FORCE_EVAL

METHOD QUICKSTEP

&SUBSYS

&TOPOLOGY

&CENTER_COORDINATES

&END CENTER_COORDINATES

COORD_FILE_NAME struc.xyz

COORD_FILE_FORMAT XYZ

&END TOPOLOGY

&CELL

ABC 10 10 20

PERIODIC NONE

&END CELL

&KIND Mg

BASIS_SET ORB DZVP-MOLOPT-SR-GTH-q2

POTENTIAL GTH-LDA-q2

&END KIND

&END SUBSYS

&DFT

&EFIELD

INTENSITY 1000000000000.0

POLARISATION 0 0 1

WAVELENGTH 5000.0

ENVELOP GAUSSIAN

&GAUSSIAN_ENV

SIGMA 10.0

T0 45.0

&END GAUSSIAN_ENV

&END

&REAL_TIME_PROPAGATION

MAX_ITER 25

EPS_ITER 1.0E-9

MAT_EXP TAYLOR



&END

&PRINT

&MOMENTS

PERIODIC .FALSE.

&END

&END

BASIS_SET_FILE_NAME BASIS_MOLOPT_UCL

POTENTIAL_FILE_NAME GTH_POTENTIALS

&MGRID

CUTOFF 100

&END MGRID

&SCF

EPS_SCF 1.0E-7

MAX_SCF 500

ADDED_MOS -1

CHOLESKY INVERSE

&SMEAR ON

METHOD FERMI_DIRAC

ELECTRONIC_TEMPERATURE [K] 300

&END SMEAR

&MIXING

METHOD BROYDEN_MIXING

ALPHA 0.1

BETA 1.5

NBROYDEN 8

&END

&END SCF

&POISSON

PERIODIC NONE

POISSON_SOLVER MT

&END POISSON

&XC

&XC_FUNCTIONAL LDA

&END XC_FUNCTIONAL

&END XC

&END DFT

&END FORCE_EVAL

Exercise 8.3: Evaluation of the electric field and the dipole moment

(a) In Fig. 1, we can observe that for 3Å distance, the time-dependent dipole pd=3Å
z (t) follows the field

closely, whereas pd=7Å
z (t) shows a clear phase-shift of the positive field crest, which we attribute to

the tunneling occurring for this geometry.

(b) The physical reason for the oscillations are interband contributions, i.e. the occupation oscillates
indefinitely between occupied and unoccupied bands, since there is no damping mechanism, which
dissipates the energy. In Fig. 2, we observe the frequency of the electric field at 60 THz for pd=3Å

z (ω).



Figure 1: Results of the real-time TDDDFT simulation. The dipole for 3Å distance follows the field
closely, whereas the dipole for 7Å distance shows a clear phase shift as well as oscillations in the right
tail.

The frequency-dependent dipole pd=7Å
z (ω) shows additional frequencies, especially a peak at 2.1 eV,

which lies in the typical range for the energy differences of the system (cf. next exercise).

Figure 2: Results of the real-time TDDDFT simulation in frequency space normalized to 1. We observe
one main peak for pd=3Å

z (ω) at 60 THz, as expected from the time-dependent dipole pd=3Å
z (t) in Fig. 1

following the electric field with ω0 = 2π · 60 THz. In contrast, the spectrum of pd=7Å
z (ω) has features

in addition to the peak at 60 THz. In particular, the small peak in pd=7Å
z (ω) at 2.1 eV characterizes the

oscillations in the right tail of pd=7Å
z (t) of Fig. 1.

(c) In order to describe the oscillation of the dipole moment

p(t) =
∫

d3r r n(r, t) , (1)

we need to expand the density n(r, t) =
∑occ

i |ψi(r, t)|2 in terms of the initial orbitals ψi(r, t0) = φi(r),
as proposed on the exercise sheet.

We start from the TDKS equation (lecture notes, Eq. (15.16)) after the laser pulse, i.e. v(r, t) =



d(r, t) · E(t) = 0:[
−

1
2m
∇2 + vext(r) + vH[n](r, t) + vxc[n](r, t) + v(r, t)

]
ψj(r, t) = i

∂

∂t
ψj(r, t) . (2)

By using the stationary KS equation[
−

1
2m
∇2 + vext(r) + vH[n](r, t) + vxc[n](r, t)

]
φn = εnφn , (3)

hKSφn = εnφn , (4)

we can rewrite Eq. (2) (with v(r, t) = d(r, t) · E(t) = 0 for t → ∞) as∑
n

εnc jn(t)φ j(r) = i
∂

∂t

∑
m

c jm(t)φm(r) , (5)

where we expanded

ψ j(r, t) =
∑

n

c jn(t)φ j(r) , (6)

since the non-zero electric field in the intermediate time can introduce a mixing of the Ground State
KS orbitals.

Using the completeness and orthonormality of the KS orbitals as well as an exponential ansatz, we
obtain from Eq. (5):

c jn(t) = c jn(t = t0)e−iεm(t−t0) , (7)

i.e. each coefficient oscillates with a phase given by the respective KS orbital energy.

Reinserting that, we find an interference effect, which leads to the observed oscillations

n(r, t) =
occ∑

i

∣∣∣∣∣∣∣∑n,m c∗jn(t − t0)c jm(t − t0)ei(εn−εm)(t−t0)φ∗n(r)φm(r)

∣∣∣∣∣∣∣
2

, (8)

with the previously discussed characteristic energy scale of the band gap εn − εm.

(d) In case, E(t) = 0, ∀t, the stationary KS equation holds at all times and therefore the expansion in
Eq. (6) reduces to one coefficient c jn = δ jn. Hence, the density takes the usual form

n(r, t) =
occ∑

i

∣∣∣φ∗i (r)φi(r)
∣∣∣2 , (9)

without time dependence, in particular without oscillations.


