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Computational Nanoscience: Solution to Exercise Sheet No. 7

Exercise 7.1: Formulæ for the dipole moment

p(t) =
∫

dt′α(t − t′) E(t′) , (1)

p(t) =
∫

d3r′ r′ n(r′, t) . (2)

(a) The incoming electric field E(t) is known, but the time-dependent polarizability tensor αi j, i, j ∈
{x, y, z}, in which all intricacies of the material are hidden, is unknown. The time integral takes
care of the ”memory” of the material, i.e. the response of the material from previous times at t′ can
influence the dipole moment at t.

Eq. (1) only holds as long as the electric field peak strength E0 is sufficiently small, which is called
linear response regime. For stronger electric fields, higher orders of E(t) have to be included, e.g.

p(t) =
∫

dt′α(t − t′) E(t′) (3)

+

∫
dt′′
∫

dt′ᾱ(t′′, t′, t)E(t′′)E(t′)

+ O(E(t)3) ,

which will enhance the dipole moment beyond the linear order. Here, ᾱ is a tensor of third order,
i.e. with elements ᾱi jk, i, j, k ∈ {x, y, z}.

(b) Eq. (2) includes all contributions to the dipole order of the emitted radiation as long as the electronic
density n(r, t) is known exactly; which is formally the case for (TD-)DFT. In practice, we have to
approximate the xc-functional, use a finite basis and similar numerical approaches and therefore
introduce deviations from the exact dipole moment.

Radiation is well described by the dipole moment as long as we are in the far field; the multipole
expansion is an expansion in r/R0, where r is the distance to a (approximately) spherical charge dis-
tribution and R0 is its radius.1 Measuring the outgoing electric field close to the charge distribution
would therefore make higher multipole-orders more important.

Exercise 7.2: Geometry

Geometry for 3Å distance:

1cf. e.g. Fließbach
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Mg 0.00000000 0.00000000 0.00000000

Mg -2.14100000 -2.14100000 2.14100000

Mg -2.14100000 2.14100000 2.14100000

Mg 2.14100000 -2.14100000 2.14100000

Mg 2.14100000 2.14100000 2.14100000

Mg -4.28200000 -4.28200000 -3.00000000

Mg -4.28200000 -0.00000000 -3.00000000

Mg -4.28200000 4.28200000 -3.00000000

Mg -0.00000000 -4.28200000 -3.00000000

Mg -0.00000000 -0.00000000 -3.00000000

Mg -0.00000000 4.28200000 -3.00000000

Mg 4.28200000 -4.28200000 -3.00000000

Mg 4.28200000 -0.00000000 -3.00000000

Mg 4.28200000 4.28200000 -3.00000000

Exercise 7.3: CP2K Input file

(c)(ii) We want to simulate a so-called ”few-cycle” pulse. That can be quantified by σ · ω0 = 10 fs ·
60 THz · 2π ≈ 3.8, which roughly measures the number of half-cycles (cf. Fig. 1(a)).

&GLOBAL

PROJECT Exc_7

RUN_TYPE RT_PROPAGATION

&END GLOBAL

&MOTION

&MD

ENSEMBLE NVE

TEMPERATURE 300

STEPS 1000

TIMESTEP 0.1

&END MD

&END MOTION

&FORCE_EVAL

METHOD QUICKSTEP

&SUBSYS

&TOPOLOGY

&CENTER_COORDINATES

&END CENTER_COORDINATES

COORD_FILE_NAME struc.xyz

COORD_FILE_FORMAT XYZ

&END TOPOLOGY

&CELL

ABC 10 10 15

PERIODIC NONE

&END CELL



&KIND Mg

BASIS_SET ORB DZVP-MOLOPT-SR-GTH-q2

POTENTIAL GTH-LDA-q2

&END KIND

&END SUBSYS

&DFT

&EFIELD

INTENSITY INDIVIDUAL_INPUT_NEEDED

POLARISATION 0 0 1

WAVELENGTH 5000.0

ENVELOP GAUSSIAN

&GAUSSIAN_ENV

SIGMA 10.0

T0 45.0

&END GAUSSIAN_ENV

&END

&REAL_TIME_PROPAGATION

MAX_ITER 25

EPS_ITER 1.0E-9

MAT_EXP TAYLOR

&END

&PRINT

&MOMENTS

PERIODIC .FALSE.

&END

&END

BASIS_SET_FILE_NAME BASIS_MOLOPT_UCL

POTENTIAL_FILE_NAME GTH_POTENTIALS

&MGRID

CUTOFF 50

&END MGRID

&SCF

EPS_SCF 1.0E-7

MAX_SCF 500

ADDED_MOS -1

CHOLESKY INVERSE

&SMEAR ON

METHOD FERMI_DIRAC

ELECTRONIC_TEMPERATURE [K] 300

&END SMEAR

&MIXING

METHOD BROYDEN_MIXING

ALPHA 0.1

BETA 1.5

NBROYDEN 8

&END



&END SCF

&POISSON

PERIODIC NONE

POISSON_SOLVER MT

&END POISSON

&XC

&XC_FUNCTIONAL LDA

&END XC_FUNCTIONAL

&END XC

&END DFT

&END FORCE_EVAL

Exercise 7.4: Real-time dynamics from TDDFT and comparison to Eq. (1)

(a) cf. (c)

(b) cf. (c)

(c) Fig. 1(a) shows the analytical electric field Ez(t) normalized to 1 and the extracted dipole moments
pz(t) plotted against time. We observe a in-phase behavior with a dependence of pz(t) on E0.

Intensity (at.u.) Electric field peak strength (at.u.) Maximum dipole strength (at.u.)

107 1.7 · 10−5 2.4 · 10−2

109 1.7 · 10−4 2.4 · 10−1

1011 1.7 · 10−3 2.4 · 100

1013 1.7 · 10−2 2.5 · 101

5 · 1013 3.8 · 10−5 6.2 · 101

1014 5.3 · 10−5 8.9 · 101

(i) We plot the maximum value of the dipoles pz against the electric field peak strength E0 in a
double-logarithmic way in Fig. 1(b). As expected, we find the first data points (in the linear
response regime) on a line with slope 1 [p(t) ∝ E(t′)1 in Eq. (1)]. The deviation expresses
itself by an offset from that line, evidencing higher orders of the dipole moment in E(t)n

(ii) We plot pz(t)/E0 in Fig. 1(c). For the smaller E0 we observe a collapse of the curves to one
curve, which shows the applicablity of Eq. (1) for these E0. For the highest E0 we observe a
deviation, i.e. higher order corrections contribute to the dipole moment. We will discuss the
oscillations in the right tail of the dipole moments on the next exercise sheet.



Figure 1: Visualization of the extracted dipoles µz(t) (a) Dipoles µz(t) and normalized electric field
Ez(t) against time showing a in-phase behavior with increasing amplitude of µz(t) for increasing E0. (b)
Double-logarithmic plot of maxima of dipoles µz(t) against electric field peak strength E0. The line is
a guide to the eye with linear behavior (Slope=1). The last dipole at E0 ≈ 1.7 · 10−2 at.u. shows a
clear offset, i.e. deviation, from the linear regime. For even higher E0, one expects the points to lie on
lines with successively increasing slopes (reflecting the increasing order of the expansion of P in orders
of En (c) Dipoles µz(t) normalized by the electric field peak strengths E0 against time. The dipole for
E0 ≈ 1.7 · 10−2 at.u. deviates from the other curves, evidencing the deviation from the linear regime. We
will discuss oscillations like the one in the right tails of the dipole moments on the next exercise sheet.


