p-GROUP ACTIONS AND COBORDISM

OLIVIER HAUTION

ABSTRACT. These are notes for a mini-course given at the University of Regensburg
in September 2022 during the Summer school “Motives in Ratisbona”. The subject is
the study of actions of finite p-groups on algebraic varieties.

‘We begin by discussing various fixed point theorems, present methods to prove
them, and illustrate them by applications and examples. Among the numerical in-
variants used to detect fixed points are the Chern numbers, whose consideration leads
us to consider the cobordism ring.

We then provide a relatively self-contained account of the construction of the
algebraic cobordism ring (following an elementary approach due to Merkurjev), and
finally illustrate how this ring can be used to interpret the fixed point theorems, and
permits to generalise them.

As prerequisites we assume familiarity with basic algebraic geometry, the Chow
group and K-theory (only Kg). These notes contain no new results, but we attempt
to explain in simple terms existing results and gather adequate references.

1. PROLOGUE

In this section, we discuss methods for detecting fixed points using the Euler number.
We refer to the papers [Ser09] and [EN11] for more details and discussions of related
questions.

Let p be a prime number. A finite group is called a p-group if its cardinality is a power
of p. Recall the following basic fact about p-groups:

1.1. Proposition. Let S be a finite set equipped with an action of a p-group G. If the
cardinality |S| is prime to p, then the fized subset SC is nonempty.

We would like to find a generalisation of this fact to algebraic varieties, instead of finite
sets.

Let us fix a base field k, and call a quasi-projective scheme over k a variety. An action
of a group G on a variety X will mean a group morphism G — Autg(X). The fized
locus X¢ is a closed subscheme of X such that Homy(Y, X%) = Homy (Y, X)¢ for any
variety Y (it may be defined as the equaliser of the morphisms induced by the actions of
all elements of 7). We say that G acts freely on X if X# = @ for all subgroups H # 1 of G.

Perhaps the most faithful generalisation of the cardinality of finite sets to higher-
dimensional varieties is the so-called Euler number:

1.2. Definition. The Euler number of a variety X is defined as
2dim X ) )
X(X)= > (=1)"dimg, Hi; (X5 Q) € Z.

=0
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Here k denotes an algebraic closure of k, and Hét,c(XE; Qy) the compactly supported
f-adic cohomology groups of the k-variety Xz = X Xspeck Speck, where ¢ is a prime
number invertible in k (see e.g. [Mil80])

1.3. Example. If A® = Speck|[z1,...,z,] denotes the n-dimensional affine space over k,
we have x(A™) = 1, because

Qg if i = 27’L,

Hew (A5 Qo) = {o if § # 2n.

1.4. Proposition. We have
(i) If Y is closed in X, we have

X(X) = x(Y) + x(X \Y).
(i) x(X xY) = x(X) - x(Y).

Proof (sketch). The first statement is a consequence of the long exact localisation se-
quence for compactly supported ¢-adic cohomology groups [Mil80, III, Remark 1.30], and
the second follows from Kiinneth theorem [Mil80, VI, Theorem 8.5|. O

1.5. Example. We have x(P") =n + 1.

Observe that if f: Y — X is a Zariski-local fibration with fiber F' (by this we means
that X admits a covering by open subschemes U such that f~'U ~ F x U over U), then
it follows from Proposition 1.4 that

X(Y) = x(X)x(F).
This permits to compute the Euler number of vector bundles, projective bundles or blow-
ups.

The case of étale locally trivial fibrations is more subtle, at least in positive character-
istic:
1.6. Example. Let k be a field of characteristic p > 0, and consider the morphism

Al — A! given by z + 2P — x. This morphism is étale of degree p, but as x(A!) = 1 we
have x(A') # px(Ah).

When a group G acts on a variety X, the variety Y such that Hom(X,T)¢ =
Homy (Y, T) for any variety T, if it exists, is called the G-quotient of X and denoted
by X/G. The G-quotient always exists when G is finite (see e.g. [SGA1, V, Proposi-
tion 1.8] or [SGA3-1, V, Théoréme 4.1(i)], the key point being that our varieties are
quasi-projective). When X = Spec A is affine, then G acts on the k-algebra A and
X /G = Spec(A%).

1.7. Proposition. Let G be a finite group of order prime to the characteristic of k.
Assume that G acts freely on X. Then

xX(X) = [G]-x(X/G).

Proof. See [1Z13, §3]. The arguments can already be found in [Ver73| in the topological
setting. The idea is the following: we refine x(X) € Z to a virtual G-representation over
the field Qy, and show that it is a multiple of the regular representation, by computing
its character using Lefschetz trace formula. O
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1.8. Corollary ([Ser09, §7.2]). Assume that p is unequal to the characteristic of k. Let
G be a p-group acting on X. If x(X) is prime to p, then X& # @.

Proof. Induction on |G|. If G # 1, then there exists a central subgroup H isomorphic to
Z/p. The group H then acts freely on U = X ~ X hence x(U) is divisible by p, and so
X(XH) = x(X) — x(U) is prime to p. By induction applied to the G/H-action on X#
we deduce that X& = (XH)G/H 4 & O

1.9. Example. Since x(A") = 1, we see that (A")¢ # @ for every action of a p-group G
on the affine space A™ over a field k of characteristic unequal to p. Note that this fails
when k has characteristic p: indeed the translation by any nonzero vector yields an action
of Z/p on A™ having no fixed point.

The next lemma yields an effective way of computing the Euler number in certain
cases:

1.10. Lemma. Assume that X is smooth and projective of pure dimension d. Then
X(X) = degca(Tx),

where Tx is the tangent bundle of X, and cq(Tx) its d-th Chern class with values in the

Chow ring CH(X).

Proof. This follows from the Lefschetz trace formula [Mil80, VI, Theorem 12.3| and the
self intersection formula [Ful98, Example 8.1.12]. O

From this we deduce:

1.11. Lemma. Assume that k has characteristic zero. Let X be a variety. Then X
supports a zero-cycle of degree x(X).

Proof. This follows from resolution of singularities and a moving lemma, see [Haul7,
Proposition 3.1.4] for details (and a generalisation to positive characteristic). O

In particular if a p-group G acts on X with x(X) prime to p over k of characteristic
zero, the variety X & supports a zero-cycle of degree prime to p.

1.12. Remark. This last fact holds more generally when k has characteristic unequal to
p.
When one has information on the étale cohomology groups of X (as opposed to knowing
just the number x (X)), more precise methods can be used, for instance:
(i) Lefschetz fixed point theorem (see [Ser09, §7.3]): if G is cyclic of order not divisible
by the characteristic of k, generated by g
2dim X

X(XG) = Z (71)1 TI‘(g : Hgt,c(XEa @2))
i=0
In particular when X = A", then X% # @ for such groups G.
(ii) Smith theory (see [Ser09, §7.4]): Let us call a variety Y p-acyclic if H, (Y, Fp,) = F),
and HY, (Y5, Fp) = 0 for i > 0. Assume that G is a p-group acting on X. Then if

X is p-acyclic, so is X¢. In particular X is geometrically connected. This applies
for instance when X = A”.
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The special case X = A"™ is particularly rich, and can be approached with a variety of
methods. For instance, it is known that (A™)¢ ~ A® for some s when n < 2 and G is a
p-group acting on A™ with p # char k, but this is an open question for larger n. We refer
to the survey [Kra96| for a discussion of open problems concerning the automorphism
group of the affine space (called the affine Cremona group).

2. FIXED POINT THEOREMS
2.1. Chern numbers.

2.1.1. Definition. Let X be a smooth projective variety. To a collection (i1, ...,4,) € N”
corresponds the Chern number

deg(cil (Tx) c Gy, (TX)) € 7.

Here T'x denotes the tangent bundle of X, and the Chern classes c;, (Tx) take values in
the Chow ring CH(X).

In particular the Euler number x(X) considered in the previous section is a Chern
number by Lemma 1.10. It might be desirable to detect fixed points using other Chern
numbers, since there are many Chern numbers as opposed to a single Euler number.
There are however some difficulties:

— We must restrict ourselves to (smooth) projective varieties in order to consider
the Chern numbers.
— This tends to breaks the inductive arguments, even if we start with a projective
variety: if X is projective, so is X, but not X ~ X!
— Indeed, we will have to restrict ourselves to the consideration of certain types of
p-groups.
Some results in this direction are gathered in the following statement:

2.1.2. Theorem ([Haul9, (1.1.1)]). Let X be a smooth projective variety with an action
of a p-group G. Assume that one of the following conditions holds:
(i) G is abelian.
(#i) char k = p.
(#ii) dim X < p.
If a Chern number of X is prime to p, then X¢ # @.

2.1.3. Remark. When p = 2, the last condition can be replaced with dim X < 4. This
is because when dim X = 2 the two Chern numbers of X have the same parity (and one
of them is x(X)), while when dim X = 3 all Chern numbers are even. With this change,
the statement of Theorem 2.1.2 becomes quite sharp (examples will be discussed later).

2.1.4. Remark. It follows from Theorem 2.1.2 that Corollary 1.8 actually holds in char-
acteristic p, provided that X is projective.

Let us briefly discuss some elements of the proof of Theorem 2.1.2. The case G = Z/p
is easy, because of the following:

2.1.5. Lemma. Let G be a finite group, and X be a smooth projective variety with a free
G-action. Then'Y = X /G is smooth, and for any iy,...,i, € N

deg(ci, (Tx) -+ ¢, (Tx)) = |G| - deg(ci, (Ty) - - - ci,, (Ty))
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Proof. Indeed, the quotient morphism 7: X — Y is étale, hence Y is smooth and Tx =
7*Ty. Since 7 has degree |G|, we have (1) = |G| in CH(Y), and it follows from the
projection formula that we have in CH(Y)

me(ciy (Tx) -+ i, (Tx)) = m 07 (ciy (Ty) -+~ 3, (Ty)) = |G| - ¢, (Ty) -+ i, (Ty ),
and we conclude by taking degrees. O

Assume now that G is a finite group, and X a variety with a G-action. We con-
sider the equivariant Chow ring CHg(X), obtained using an algebraic version of Borel’s
construction (see e.g. [EG98]). There is a forgetful morphism CHg(X) — CH(X),
and the Chern classes of G-equivariant vector bundles lift to CHg(X). In particular,
when X is smooth and projective, its Chern numbers are in the image of the composite
CHg(X) — CH(X) 2%, 7.

In general, the elements of CHg(X) are not represented by G-invariant closed sub-
schemes of X, but rather by Z-linear combination of G-invariant closed subschemes of
X x V, where V runs over the finite-dimensional G-representations. However:

2.1.6. Lemma. Assume that G is trigonalisable over k, i.e. every G-representation over
k admits a subrepresentation of codimension one. Then the image of CHg(X) — CH(X)
1s the subgroup generated by classes of G-invariant closed subschemes of X .

Sketch of proof. For a variety Y, denote by Z(Y) the group of cycles on Y, and if G
acts on Y by Z5(Y) C Z(Y) the subgroup generated by classes of G-invariant closed
subschemes. Let V be a finite-dimensional G-representation. Then the composite

Za(X xV) - CHg(X) —» CH(X)
coincides with
Za(X xV)—> Z(X xV)—> CH(X x V) - CH(X).
Let V! C V be a codimension one subrepresentation. Then one shows that the image of
Za(X xV)— Z(X xV)—->CH(X x V) - CH(X x V')
is contained in the image of
Za(X x V') - Z(X x V') - CH(X x V')

(using the explicit description of the intersection with a divisor in the Chow group, and
the fact that X x V/ € X x V is a principal divisor), and we conclude by induction on
dimV. g

To prove Theorem 2.1.2, we may assume that k is algebraically closed. Then under
the condition (i) or (ii), the group G is trigonalisable over k, hence by Lemma 2.1.6 and
the assumption on the Chern numbers of X, there exists a G-invariant closed subscheme
in X having degree prime to p. Since G is a p-group, this is only possible if X¢ # @.

2.2. Coherent Euler characteristics.

2.2.1. Example. Assume that X is a smooth connected projective variety of dimension
1. Then the only Chern number of X is

dege1(Tx) = 2(1 - g),

where g is the geometric genus of X. In particular all Chern numbers of X are even, and
therefore Theorem 2.1.2 becomes empty for such X when p = 2.
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In the situation of Example 2.2.1, we would rather like to use the parity of the genus
g to detect fixed points of 2-groups. Let us first generalise the genus of curves to higher
dimensional varieties:

2.2.2. Definition. Let X be a projective k-variety. The Euler characteristic of a coherent
Ox-module F is defined as the integer
dim X
(2.2.2.2) XX, F) = > (~1)dim H'(X, F) € Z.
i=0

In particular we obtain an invariant x (X, Ox) € Z. When X is smooth and projective,
this invariant is not a Z-linear combination of Chern numbers. However we have the
Hirzebruch—Riemann—Roch formula

X(X,0x) =degTd(Tx) € Q,

where Td(Tx) € CH(X) ® Q is the so-called Todd class. So x(X,0Ox) is a Q-linear
combination of Chern numbers, which happens to take integral values on all smooth
projective varieties X.

2.2.3. Proposition. The integer x(X,Ox) is a birational invariant of the smooth pro-
jective variety X.

Proof. In fact, the groups H'(X, Ox) themselves are birational invariants, see e.g. [CR11,
Theorem 3.2.8]. O

2.2.4. Proposition. When X,Y are smooth projective varieties, we have
X(X xY,Oxxy) = x(X,O0x) - x(Y, Oy).
Proof. See e.g. [Ful98, Example 15.2.12]. O

2.2.5. Theorem ([Haul9, (1.2.1)]). Let X be a projective variety with an action of a
p-group G. Assume that one of the following conditions holds:

(i) G is cyclic.

(ii) chark = p.
(#ii) dim X <p— 1.
If F is a G-equivariant coherent Ox -module such that x(X,F) is prime to p, then X¢ #
.

2.2.6. Remark. The Ox-module Ox itself is G-equivariant. Note that x(X,0x) = 1
when X is a geometrically connected and H*(X,Ox) = 0 for i > 0. This happens for
instance X is rational, or chark = 0 and X is rationally connected (which means that
two general points are contained in a rational curve). In this case, the result (i) of The-
orem 2.2.5 is a consequence of a Lefschetz fixed-point theorem for coherent cohomology,
and (ii) follows from Smith theory.

The next examples illustrate the sharpness of the conditions:

2.2.7. Example. Assume that chark # 2. Consider the involutions of P! given by
o:[z:y]— [y:a] and 7: [z : y] — [—2 : y]. These involutions commute with one
another, giving an action of G = Z/2xZ/2 on P!. The fixed points of o are [1: 1],[1 : —1],
and those of 7 are [1: 0], [0 : 1], hence G has no fixed point on P!. On the other hand,
we have x(X,0x) = 1.
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2.2.8. Example. Let G be a nonabelian p-group, where k has characteristic # p. Then
there exists an irreducible G-representation V' of dimension p” with n > 0. When G
has order p?, then n = 1. The k-variety X = P(V) with its induced G-action satisfies
X% = @. We have x(X,0x) =1 and dim X = p” — 1. The blow-up Y of P(V @ 1) at
the point P(1) has a natural G-action without fixed points, and a Chern number of Y is
prime to p when p # 2 (namely deg(ci(Ty)?")).

The proof of the next statement illustrates how the existence of fixed points can be
used to prove properties of automorphisms groups of varieties:

2.2.9. Corollary ([Xu20]). Assume that k is algebraically closed of characteristic zero. Let
X be a rationally connected variety of dimension n. Assume that the group of birational
automorphisms Bir(X) contains a subgroup G, which is a p-group for p >n+1. Then G
is abelian of rank at most n.

Proof (sketch). Using equivariant resolution of singularities, we may assume that X is
smooth projective and that G C Aut(X). This procedure does not change the fact that
X is rationally connected, and so we have x(X,0x) = 1. Then X admits a G-fixed
point by Theorem 2.2.5. One may then prove that the G-action on the tangent space
Tx , is faithful (using the fact that G is finite and k has characteristic zero, see [Popl4,
Lemma 4]). Since p > n = dimy, T'x , and G is a p-group, we deduce that Tx , contains
no irreducible representation of dimension > 1 (irreducible representations of p-groups
have dimension a power of p). Therefore G has a faithful representation of dimension n,
which is a direct sum of 1-dimensional representations, and the result follows. O

2.3. Grothendieck groups. Let us now discuss the proof of (i) and (iii) in Theo-
rem 2.2.5. When X is a variety, we denote by K{(X) the Grothendieck group of coherent
Ox-modules. It is defined as the quotient of the free abelian group on classes of coherent
Ox-modules, modulo the relations [F2] = [F1] + [F3] whenever

0—>.7:1—>.7:2—>]‘—3—>0

is an exact sequence of coherent Ox-modules. If f: Y — X is a flat morphism, then
pulling back coherent Ox-modules along f induces a group morphism f*: Kj(X) —
Kj)(X). If f: Y — X is a projective morphism (not necessarily flat), setting

F[F] =Y _(~D'[RfF]
induces a push-forward map fi: K{(Y) — K{(X). Note that, when p: X — Speck is
projective, we have py[F| = x(X,F) € K{(Speck) = Z.

As above, the case G = Z/p is easy:

2.3.1. Lemma. Let X be a projective variety with a free G-action, and denote by w: X —
Y = X/G the G-quotient. Then for any coherent Oy -module F we have

(X, m*F) = |G| - x(Y, F).

Proof. We proceed by induction on the dimension of the support of F. Since the group
K{(Y) is generated by classes [Oz], where Z C Y is a closed subscheme, replacing X
with X xy Z, we may assume that F = Oy. Let d = |G|. As d # 0, it will suffice to
prove the statement for 7 = (Oy)®? instead. Then [1,Ox ] —[(Oy)®?] € K}(Y) belongs
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to the subgroup generated by classes of Oy-modules supported in codimension at least
one, hence by induction it will suffice to prove the statement for F = 7, Ox.
As the G-action on X is free, we have a cartesian square

Gx X2 +X

P\L \Lﬂ
X—"->Y

where a is the action morphism and p the projection to the second factor. We view G as
scheme, the disjoint union of d copies of Spec k. Then

T 1 Ox ~ psa*Ox = pxOgxx = (Ox)%7,
hence x(X,7*m,Ox) =d- x(X,0x) =d - x(Y,7.Ox, as required. O

Let G be a finite group and X a projective variety with a G-action. Proceeding as
above, we define the Grothendieck group of G-equivariant coherent O x-modules K{,(X; G).
We let p be a prime number, and define

(

(2.3.1.) dy(X;G) = im(K4(X; Q) — Ky(X) XX 7 7).

The following observation will be crucial:

2.3.2. Lemma. Let H C G a central subgroup acting trivially on X. Assume that k is
algebraically closed. Then dy(X;G) = d,(X; G/H).

Proof. We let F be a G-equivariant coherent Ox-module such that y(X,F) is prime
to p, and show that there exists a G/H-equivariant coherent Ox-module G such that
X(X,G) is prime to p. As H C G is central and k contains enough roots of unity, the
Ox-module F admits a G-equivariant decomposition F = @, F, where h runs over
the characters of H, and H acts on Fj via h. We may thus assume that H acts on F
through a single character h. As x(X,F) is prime to p, there is an integer 7 such that
dimy, HY(X, F) is prime to p. Set V = H*(X,F). Then H acts trivially on G = FQ V",
and x(X,G) = x(X,F) - dimy V'V is prime to p. O

2.3.3. Lemma. Let G be a cyclic p-group, and H C G a subgroup such that H # G. Let
X be a variety with an action of G, and set Y = X/H. Then the morphism X¢ — Y¢
18 surjective.

Proof. Let K be an algebraically closed field, and consider y € Y% (K). Since the quotient
X — Y is surjective (see [SGA1, V, Proposition 1.1 (ii)]), we may find € X (K) mapping
to y. Let g € G be a generator. As g-y =y, we may find h € H such that g-x =h-x
(the fibers of X — Y are the H-orbits, see [SGAL, V, Proposition 1.1 (ii)]). But h = gP“
for some u € Z, hence z is fixed by gh™' = ¢'~P“, which is a generator of G. Thus
r € X¢(K), as required. O

We can now prove (i) in Theorem 2.2.5: If G # 1, let H C G be the subgroup of index p.
Consider the quotient morphism ¢: X —Y = X/H. If X¢ = @, then Y& = YO/H = &
by the Lemma 2.3.3. If d,(X;G) # 0, then d,(Y;G) # 0, hence d,(Y;G/H) # 0 by
Lemma 2.3.2. We may thus replace X with ¥ and G with G/H, and thus assume that
G ~ Z/p. This case was treated in Lemma 2.3.1.
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We now discuss the proof of (iii) in Theorem 2.2.5. Let G be a finite group and X a
variety with a G-action. Besides K{(X; G), one may also consider an equivariant theory
constructed using Borel’s construction (similar to the equivariant Chow ring CHg(X)
mentioned above). However will be more useful to consider a simpler theory:

2.3.4. Definition. Let V be the regular representation of G over k. We let T = Spec k(V),
and consider the field K = k(V)¢. Viewing the scheme (X x T)/G as a K-variety, we set

Ko(X) = K4(X x T)/G).
2.3.5. Remark. In the definition of K¢ (X), we may replace V with any finite-dimensional,

generically free G-representation, and obtain a canonically isomorphic group Kg(X).

2.3.6. Proposition. The forgetful morphism factors as Kj(X;G) — Kg(X) — K{(X),
where the morphism Kq(X) — K{(X) is surjective.

Proof. We have morphisms (recall T is the spectrum of a purely transcendental extension)
Ka(X) = Kj(X x T)/G) — Kj(X x T) ~ Kp(X).
and
K)(X;G) S5 KX x V;G) LN K\(X xT;G) ~ K|(X xT)/G) = Kg(X),

whose composite is the canonical morphism K| (X;G) — K{(X). Here « is surjective by
equivariant homotopy invariance, and § is so by the equivariant localisation sequence. [J

2.3.7. Remark. Observe that the morphism Kg(Speck) — K{(Speck) = Z is bijective,
so in a sense K¢ is much closer to K| than is Ky(—; G).

Note that Proposition 2.3.6 implies that
(2.3.7.a) d,(X;G) = im(Ka(X) — K)(X) 222 7 S 1),
2.3.8. Proposition. The group Ko(X) is endowed with a filtration
o CKa(X)in-1) CKa(X)mn) C .-

vanishing in negative degrees, which is compatible with the topological filtration of K{(X)
(by codimension of supports), via the morphism Kqa(X) — K{(X).

Proof. The filtration is induced by the topological filtration on Kj((X x T)/G). O

The theory K¢ has flat pullbacks and projective pushforwards along G-equivariant
morphisms. In addition, it satisfies the localisation axiom:

2.3.9. Lemma. Leti:Y — X be the immersion of a G-invariant closed subscheme, and
u: U — X its open complement. Then the following sequence is exact:

Ko(Y) % Ko(X) “5 Ka(U) 0.

Let us put ourselves in the situation of (iii) in Theorem 2.2.5. We assume that char k #
p and G # 1. Then the group G contains a central subgroup H isomorphic to Z/p. Let
Y =X/H,U=X-\ X" and V =U/H. We thus have a commutative diagram

XH . x<* Uy
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Here the square is cartesian, and i, j are closed immersions (as char k # p).
2.3.10. Lemma. The morphism ¢*: Kg(V) — Kg(U) is surjective.

Proof. Since the H-action on U is free, the category of G-equivariant coherent Op-
modules is naturally equivalent to that of G/H-equivariant coherent Oy -modules, in-
ducing an isomorphism K (V;G/H) — K\(U;G). This isomorphism factors through the
morphism ¢*: K\(V;G) — K{(U;G), hence the latter is surjective. Since K{(U;G) —
K¢(U) is surjective by Proposition 2.3.6, the lemma follows. O

2.3.11. Lemma. Assume that k contains a primitive p-th root of unity. Then
s 0 ¢ (Ka(V)) C pKa(V).

Proof. The assumption implies that H is isomorphic as an algebraic group to p,; let us
fix such an isomorphism. Then the G-equivariant Oy-module ¢, Oy is Z/p-graded, and
the fact that the G-action on U is free implies the existence of an invertible Oy-module
L and of a G-equivariant decomposition (recall that H is assumed to be central in G)

p—1 ]
¢*OU = @ ‘C®17

i=0
Then we compute (as 7y is finite, the higher direct images R‘¢, vanish for i > 0), for
any € Kg(V) (we use the projection formula)

p—1

$w 0 $*(B) = D _[L] N B,

i=0
where N refers to the natural action of the Grothendieck group Ko (V; G) of G-equivariant
locally free coherent Ox-modules on K¢g(V). Now, in Ko(V;G) we have

p—1

Dol = (=[P +p- QLD

i=0
for some polynomial @ € Z[xz]. It is not difficult to see that (1 — [£]) n Kg(V),) C
Kg(V)n-1) for every n. As dimV < p—2 by assumption and Kg(V)(,) = 0 when n <0
by Proposition 2.3.6, the statement follows. O

Consider now the commutative diagram

W*i % \L
Jx v*
Ka(X") ——=Ka(Y) ——= Kg(V) —=0
where the lower row is an exact sequence by Lemma 2.3.9. A diagram chase using
Lemma 2.3.10 and Lemma 2.3.11 then shows that
T Ka(X) = jxKa(X") mod p.
Thus, in view of (2.3.7.a), it follows that (see (2.3.1.a))
dy(X;G) = dp(X7; G).

We conclude the proof by induction on |G|, using Lemma 2.3.2.
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3. THE COBORDISM RING

3.1. Oriented cohomology theories. Recall that k is a field. We denote by Smy the
category of smooth quasi-projective k-schemes.

3.1.1. Definition (Oriented cohomology theories, see [LMO07, Definition 1.1.2]). A functor
H from Sm;” to the category of Z-graded commutative rings, together with a group
morphism f: H(Y) — H(X) for each projective morphism f: Y — X in Smy, is called
an oriented cohomology theory if the conditions (i)—(vii) below are satisfied. We write
f1; instead of H(f) when f is a morphism in Smy, and denote by H"(X) the degree n
component of H(X).
(i) If X,Y € Smy, are connected and f: Y — X is a projective morphism, then fII is
homogeneous of degree dim X — dim Y.
(ii) (“Projection formula”) If f: Y — X is a projective morphism in Smy, then f(a (b)) =
fi(a)b for any a € H(Y),b € H(X).
(iii) (“Functoriality of push-fowards”) If X € Smy, then (idx)s = idyx). If f: YV — X
and g: Z — Y are projective morphisms in Smy, then filo gl = (fog)H.
(iv) (“Additivity”) For any X,Y € Smy, the natural morphism H(X 1Y) — H(X) x H(Y)
is bijective.
(v) (“Base-change formula”) Given a transverse square in Smy

Wz

y Lox
with f projective, we have
hloel = gf o f.
(The transverse condition means that the square above is cartesian, and that for

every connected component Wy of W, denoting by Yp, Zy, X the connected compo-
nents of Y, Z, X containing the images of Wy,

dim Wy + dim X = dim Yy + dim Zp.)

(vi) (“Projective bundle Theorem”) Let E be a rank r vector bundle over X € Smy, and
p: P(E) — X the associated projective bundle. Denote by s: P(E) — Op(g)(1) the
zero-section of the canonical bundle, and write & = s o si(1) € H'(P(E)). Then
1,¢,...,€" 1 is a basis of the H(X)-module H(P(E)) (for the structure induced by
Ph)-

(vii) (‘%—Iomotopy invariance”) Let p: V' — X in Smy be an affine bundle (i.e. a torsor
under a vector bundle over X'). Then pj;: H(X) — H(V) is bijective.

3.1.2. Remark. There is no “localisation axiom”.

3.1.3. Example. The Chow ring CH is an example of oriented cohomology theory. An-
other example is given by the Grothendieck group of coherent modules. Indeed when
X € Smy, the group K{)(X) may be identified with the Grothendieck group of locally
free coherent Ox-modules, which endows it with a ring structure, and permits to define
pullbacks along arbitrary morphisms in Smy. For X € Smy we set K (X) = K (X)[t,t 1]
where t has degree —1. Pullbacks in K are induced by those in Kj. If f: Y —» X is a
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projective morphism of pure codimension d in Smy, the push-forward K(Y) — K(X) is
induced by
wtt > fo ()t
One then checks we thus define an oriented cohomology theory K.
For the rest of this section, we fix an oriented cohomology theory H.

3.1.4. Definition. Let V' be a vector bundle of rank 7 over X € Smy. Using the notation of
(3.1.1.vi) for E = V'V, the Chern classes cl}(V) € H'(X) are defined using Grothendieck’s
method [Gro58] by setting

c(V)y=1 and cHV)=0ifi¢{0,...,7},

(2

and

D (D (E (V)ET = 0 € H'(P(E)).

=0

We will use the simplified notation f, f*,c; instead of fI, 1, c! when no confusion
seems likely to arise. If j: Y — X is a closed immersion in Smy, we will write [Y] =
ja(1) € H(X).

3.1.5. Remark. When L — X is a line bundle, and s: X — L its zero-section, it follows
from the definition that

c1(L) = s% 054(1) € HY(X).
In particular, in the notation of (3.1.1.vi) we have & = ¢;(O(1)).

Assume now that Z € Smy is the zero-locus in X of a section of L transverse to
the zero-section z: X — L (in the sense of (3.1.1.v)). Then by homotopy invariance
(3.1.1.vii), we have z* = s*: H(L) — H(X), hence by the base-change axiom (3.1.1.v),
we deduce that

(3.1.5.a) a (L) =1[7].
In particular we have, for any s € N (writing P’ = & for i < 0)
(3.1.5.b) 1 (0(1))° = [P*°] € H*(P™),

where P"~° C P" is any linear embedding.

3.1.6. (Splitting principle) Let E be a vector bundle of rank r over X € Smy. Counsider

the projective bundle p: P(EY) — X. Then the pullback p*: H(X) — H(P(E")) by the

axiom (3.1.1.vi), and we have an exact sequence of vector bundles over P(E")
0—>U—p*E— 0O(1) -0,

where U is a vector bundle of rank r — 1 over P(EY). Iterating, we see that there

exists a composite of projective bundles ¢: P — X such that ¢*FE admits a filtra-

tion by subbundles whose successive quotients are line bundles. Note that the pullback
q¢*: H(X) — H(P) is then injective.

3.1.7. Lemma. Let L — X be a line bundle. Then the element c1(L) € H(X) is nilpotent.

Proof. By Jouanolou’s trick (see [Jou73, Lemme 1.5]), there exists an affine variety X’
and an affine bundle f: X’ — X. Since f*: H(X) — H(X’) is injective by (3.1.1.vii),
we may replace X with X', and thus assume that X is affine. Then the line bundle L
is generated by global sections, hence there exists a morphism f: X — P" such that
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f*O(1) ~ L. We may thus assume that X = P™ and L = O(1). Then by (3.1.5.b) the
class ¢;(L)® = [P"*] € H(P") vanishes for s = n + 1. O

3.2. The formal group law.

3.2.1. Definition. Let R be a commutative ring. A (commutative, one-dimensional)
formal group law over R is a power series F' € R[[z,y]] such that:

(i) F(z,y) = F(y,z) € R[[z,y]],

(ii) F(z,0) =z € R[[x]],

(i) Pz, F(y,2) = F(F(z,9),2) € Rl[z,9, ]
3.2.2. Remark. From the axioms, we deduce that a formal group law F' € R[[z,y]] must
be of the form

F=x+y+ Z a; jz'y’, with a; ; = a;,; € R.
4,521
There exists a ring L (the “Lazard ring”) endowed with a formal group law U € L[[z, y]],

which is universal in the following sense: for every formal group law F' over a ring R,

there exists a unique ring morphism f: L — R mapping the power series U € L[|z, y]] to
F e R[[z,y]].

3.2.3. Theorem. There exists a power series

Fu(z,y) = Y a; o'y’ € H(Speck)[[z,y]]

i,jeN
with a; ; € H'~""9(Spec k) such that for any line bundles L, M over X € Smy,
(3.2.3.a) L@ M) = Fu(f(L), (M) e HX).

Moreover the power series Fy is a formal group law over H(Speck).

Proof (sketch). Let m,n € N. By the axiom (3.1.1.vi), the H(Spec k)-module H(P™ x P™)
is freely generated by the classes ¢1(O(1,0))%1(0(0,1)) for 0 < i < m and 0 < j < n.

m, j

Therefore there are unique elements a;";" € H'~"7(Spec k) such that

(3.2.3.b) c1(0(1,1)) =Y > " a]"e1(0(1,0)) e1 (0(0, 1))
i=0 j=0

m,n

Next, one checks that a; ; = a;; does not depend on m,n as long as ¢ < m and j < n,
and that the resulting power series

Fu(z,y) = Z a;;x'y’.
,J

is actually a formal group law (details omitted, see [LMO07, Corollary 4.1.8]).

Now let L, M be line bundles over X € Smy, and let us show the formula (3.2.3.a).
By Jouanolou’s trick (see [Jou73, Lemme 1.5]), we may assume that X is affine. Then
the line bundles L, M are generated by global sections, and thus there exists a morphism
f: X — P™ x P" for some m,n such that f*O(1,0) ~ L and f*O(0,1) ~ M. We
conclude by applying f* to the equation (3.2.3.b). O

3.2.4. Definition. The power series Fy of Theorem 3.2.3 will be called the formal group
law of the oriented cohomology theory H.
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3.2.5. Example. We have Fou(z,y) = ¢ + y and Fi(z,y) = x + y — tzy.

3.2.6. Lemma. Let E be a vector bundle over X € Smy. Assume that E admits a
filtration by subbundles whose successive quotients are line bundles Ly, ..., L.. Then for
any 1 € N

Ci(E) = Ui(Cl(L1)> ce- 701(Lr))>

where o; denotes the i-th elementary symmetric polynomial in r variables.

Proof. Let p: P(EY) — X be the projective bundle. In view of the definition of the Chern
classes, it will suffice to prove that

T

[ (cr(01)) = p*er(Ly)) = 0 € HP(EY)).

i=1
We proceed by induction on the rank r of E. Using Theorem 3.2.3, we have
c1(0(1)) = e1(p*Lr @ p*L; (1)) = p*er(Ly) + e1(p* Ly’ (1))g € H(P(EY)),
where
9= > a;ca(p*L)'e(p*Ly (1)) e H(P(EY)).
120,5=1

Let E' = E/L,. Observe that the closed immersion j: P(E’Y) — P(EVY) is the zero-locus
of a section of the line bundle p*LY (1) transverse to the zero-section (in the sense of
(3.1.1.v)), so that ¢1(p*Ly (1)) = [P(E'V)] € H(P(EY)). Thus ¢1(O(1)) — p*c1(Ly) =
[P(E™)] - g, and so

T r—1
[Ter0) = p*er (L)) = G (%9 - [ (1 (0(1) = p*er (L)),
i=1 i=1
where p’: P(E'V) — X is the projective bundle, which vanishes by induction. O

3.2.7. Remark. From Lemma 3.2.6, one easily deduces the Whitney sum formula ex-
pressing the behaviour of Chern classes with respect to exact sequences of vector bundles.

3.3. Constructing new theories. In this section H is an oriented cohomology theory.
When R is a Z-graded ring, we denote by R[b] the polynomial ring over R in the variables
b; for i € N~ {0}. The ring R[b] is Z-graded by letting b; have degree —i.

Consider the power series (where by = 1)

m(x) = Zbixi € Z[b][[=]]-
‘€N
3.3.1. Proposition. There is a unique way to define for every vector bundle E — X in
Smy, an invertible element PY(E) € H(X)[b]* in such way that:
(i) f*PY(E) = PY(f*E) for any morphism f:Y — X in Smy and vector bundle
E—- X,
(ii) PR(L) = w(c1 (L)) when L is a line bundle over X € Smy,

(iii) if 0 > B4y — Ey — E3 — 0 is an exact sequence of vector bundles over X € Smy,
then PR (Ey) = PY(Ey) - PH(E3).
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Proof. Uniqueness follows from the splitting principle. Next note that, if L is a line
bundle over X € Smy, then 7(ci(L)) € H(X)[b] by Lemma 3.1.7. Let E be a vector
bundle over X € Smy, and let us construct the element PH(E). We may assume that E
has constant rank r. By the splitting principle, we may find a composite of projective
bundles ¢: P — X such that ¢*F admits a filtration by subbundles whose successive
quotients are line bundles Ly, ..., L. Then ¢*: H(X) — H(P) is injective. The element

(3.3.1.a) [ [7(c1(q*Li)) € H(P)[Db]
i=1
is a symmetric polynomial in the variables ¢1(L1),...,c1(L;), hence a Z-linear combi-

nation of elementary symmetric polynomials in these variables. By Lemma 3.2.6 the
element (3.3.1.a) is a polynomial in the Chern classes of ¢*F, hence is the image of a
unique element PH(E) under the pullback ¢*: H(X)[b] — H(P)[b]. It is easy to verify
that the element PY(E) depends neither on the choice of the filtration, nor on the choice
of g: P — X (the key point being that the base-change of a projective bundle remains
one), and that the conditions (i) and (ii) are verified.

Moreover observe that the element (3.3.1.a) is invertible in H(P)[b] (because 7(0) = 1),
and that its inverse is again a symmetric polynomial in ¢;(Lq),...,c1(L,), and so as
above the inverse is the pullback of a unique element of H(X)[b], which yields an inverse
of PH(E) in H(X)[b], because ¢* is injective.

Finally to prove (iii), we find a composite of projective bundles ¢: P — X such that
q¢* E71 and ¢* F3 admit filtrations by subbundles whose successive quotients are line bundles
(see (3.1.6)). This induces a filtration of ¢* E2 where quotients are line bundles, and it is
easy to verify that PH(E,) = PY(E;) - PH(E3). O

3.3.2. Definition. The assignment PY of Proposition 3.3.1 extends uniquely to a group
morphism

PR Ko(X) - H(X)[b]",
where Ky(X) denotes the Grothendieck group of vector bundles over X € Smy,.

For X € Smy, we set H(X) = H(X)[b] and for a morphism f: Y — X in Smy we let
fii H(X) — H(Y) be the map induced by ff. If f is projective, for any a € H(Y') we
set

fela) = fFHPY(F*Tx — Ty)a) € H(X).
3.3.3. Proposition. The functor H, together with the above defined pushforwards, is an
oriented cohomology theory.

Proof. See [LMO07, §7.4.2] or [Mer02, Proposition 4.3|. O

The formal group law of H can be derived from that of H as follows. Consider the
power series (where by = 1)

exp(x) = zm(z) = Zbix”l € Z[b][[=]]-
€N
Observe that, if L is a line bundle over X € Smy, then
¢ (L) = exp(}!(L)) € H(X).
Denoting by log the composition inverse of exp, we thus have in H(Spec k)[[z, y]]
Fu(z,y) = exp(Fu(log(x),log(y)))-
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Taking H = CH, this yields a ring morphism
(3.3.3.a) L — CH(Speck) = Z[b].

which classifies the formal group law exp(logx + logy). Purely algebraic considerations
can be used to show that the morphism (3.3.3.a) is injective (see [Ada74, II, §7]).

3.4. The cohomology of the point. In this section, we will describe the image of the
morphism (3.3.3.a).

3.4.1. Definition. Let H is oriented cohomology theory. When X is a smooth projective
variety, we will denote by [X]u € H(Speck) the element p(1), where p: X — Speck is
the structural morphism. In addition, we will denote by H; C H(Speck) the subgroup
generated by the classes [X]y, where X runs over the smooth projective varieties.

Note that Hy is a graded subring of H(Spec k).
3.4.2. Example. We have CHy = Z and Ky = Z[t] C Z[t,t™!].

The inclusion CH, C CH(Spec k) = Z[b] is not surjective (as we will see later, this is
related to the fact already observed that certain Chern numbers are always divisible by
certain integers), and moreover admits no retraction. The situation improves somewhat
if we consider K-theory instead of Chow groups:

3.4.3. Theorem (Hattori-Stong). The morphism of graded groups
K, C K(Speck) = Z[t,t~'][b]
admits a retraction.

Proof. See [Mer02, Proposition 7.16 (1)]. In brief, there are two steps:

(i) Observe that the subring K, C Z[t,t~"][b] is contained in Z[t][b]. Then using the
Riemann—Roch theorem, show that the morphism Z[t][b] — Z[b] given by ¢ — 0
induces an isomorphism K, = CH - Since CH, C Z[b], this implies that for each
integer d the homogeneous component K J?d is a free abelian group of rank bounded
by the number of monomials of degree —d in Z[b].

(ii) For each prime number p and integer n € Nx\ {0}, construct an n-dimensional smooth
projective variety MP, in such a way that the classes of [M% x---x ME ], where
ba, -+ ba,, Tuns over the monomials of degree —d, have F,-linearly independent
images in F,[t,t!][b], for each d € N~ {0}.

Combining the two steps shows that for each prime p the morphism K ,/p — F,[t, t=1][b]
is injective, which implies the theorem. O

3.4.4. Remark. The retraction is not a ring morphism!

3.4.5. Example. (Milnor hypersurfaces.) Let 0 < m < n be integers. Denote by U, the
kernel of the canonical epimorphism 1™+ — O(1) of vector bundles over P, and set
Hpn = Ppm (U, ® 19"7™). Then H,, 5, is a smooth hypersurface in P™ x P" defined by
the vanishing of a section of the line bundle O(1, 1) which is transverse to the zero-section
(in the sense of (3.1.1.v)).

3.4.6. Lemma. Let H be an oriented cohomology theory. The coefficients a, », € H(Speck)
of the formal group law Fy belong to the subring Hy.
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Proof. We proceed by induction on m + n. By symmetry we may assume that m < n.
Consider the Milnor hypersurface H,,, C P™ x P*. Then by (3.1.5.a), (3.1.5.b) and
(3.1.5.b)

(3.4.6.a) [Hnnl = c(O(1,1) = > ai [P x P"7] € HP™ x P").
0<i+jij<m+n

Pushing forward along P — P” yields in H(Spec k)
Am,n = [[Hm,nﬂH - Z Qj5 * [[Pm_l X Pn_jﬂH

0<i+j<m+n—1

and we conclude by induction. O

3.4.7. Remark. The proof of Lemma 3.4.6 in fact shows that the coeflicients a,, , are
polynomials in the classes of Milnor hypersurfaces and projective spaces.

It follows from Lemma 3.4.6 that the morphism L — H(Speck) classifying the formal
group law of H has image contained in the subring Hf. One may further prove:

3.4.8. Theorem. IfH = CH or H = K, then the ring morphism L. — H; s bijective.

Proof. See [Mer02, Proposition 6.2 (2), Theorem 8.2]. Roughly speaking the steps are
the following:

(i) As already mentioned, the morphism L. — CH, is injective.

(ii) Using the Riemann-Roch theorem, one shows that there exists an isomorphism of
L-algebras K, ~ CH¢, compatibly with the classes of smooth projective varieties
(Lemma 3.5.8 below).

(iii) From the proof of Theorem 3.4.3, we see that the classes [MP] k, where p runs over
the prime numbers and n over N \ {0}, generate the ring K ;.

(iv) Each variety MP is a hypersurface in a product of projective spaces, hence its class
in [MP]x € K; belongs to the L-algebra generated by classes of projective spaces
(arguing as in Lemma 3.4.6).

(v) Explicit computations show that the classes of projective spaces [P"]cy € CH; C
Z[b] are the coefficients of the derivative of the power series logx (Mis¢enko’s for-
mula), from which one deduces that they belong to the subring L. O

In particular, for H € {CH, K} the ring H, does not depend on the base field k.

3.4.9. Remark. When k£ has characteristic zero, there exists an oriented cohomology
theory Q (see [LMO07]) with the property that

L = Qf = Q(Speck).
3.5. Chern numbers and the Lazard ring.

3.5.1. Definition. A sequence of integers a = (aq,...,qm,) with m € N is called a
partition if ap = ag = -+ = a,, > 0. We will write |a| = a1 + -+ + oy, € N. To the
partition « corresponds the monomial b, = by, - - by,, € Z[b].

3.5.2. Definition. Let X € Smy and E € Ky(X). Observe that P(E) has degree zero
in the Z-graded ring H(X)[b]. For each partition o, we define the Conner—Floyd Chern
class cH(E) € HY (X) (or simply ¢q(E)) as the by-coefficient of PH(E), so that

PYE) =Y cll(E)bs € H(X)[b].
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3.5.3. Example. When « is the partition (1,...,1) of length n, we have b, = b} and
ca(E) = ¢ (F) for any vector bundle £ — X in Smy,.

3.5.4. Lemma. There are polynomials Qu, Ro € Z[c], indexed by the partitions «, such
that, for any vector bundle E — X in Smy

ca(E) = Qulci(E),...) and co(—FE) = Ruo(c1(E),...),

and every polynomial in Z[c] is a Z-linear combination of the polynomials Qy, resp. Re.

Proof (sketch). Let a = (aq,...,ay,) be a partition, and let n = m. The n-th symmetric
group acts on the ring Z[x1, ..., x,] by permuting the variables. The sum of the elements
in the orbit of " - - - &m may be written as a polynomial @, in the elementary symmetric
polynomials o4, ..., 0., which does not depend on the choice of n. The formula ¢, (F) =
Qalc1(E),...) then follows from the splitting principle.

If P € Z[cy,...,cn), then P(oq,...,0,) € Z[z1,...,2,] is a Z-linear combination of
orbits of monomials in x4, ..., x,, hence P is a Z-linear combination of polynomials Q.
The relation PH(E)PY(—E) = 1 permits to express c,(—E), resp. co(E), as a Z-linear
combination of cg(E), resp. cg(—FE) (whose coefficients depend only on «). O

For any partition «, taking the b,-coefficient yields a group morphism
co: L C Z[b] — Z.

3.5.5. Definition. When X is a smooth projective variety we will denote by [X] € L the
element corresponding to [X]cu under the isomorphism L — CH £

3.5.6. Remark. The group morphism ¢, is given by
co([X]) = deg (CSH(—T)()) €z,

for every smooth projective variety X. Therefore, in view of Lemma 3.5.4, the class
[X] € L determines, and is determined by, the collection of Chern numbers of X. This
yields an alternative definition of the Lazard ring: declare two smooth projective varieties
equivalent if they have the same collection of Chern numbers (indexed by tuples of integers
in N). The set of equivalence classes is a commutative monoid for the disjoint union; let
L be the associated abelian group. Then the cartesian product of varieties induces a ring
structure on L, and we have a ring isomorphism L —» L. mapping the class of a smooth
projective variety X to the class [X].

3.5.7. Remark. Each of the mappings X — x(X) and X — x(X,Ox) defines a ring
morphism L. — Z.

3.5.8. Lemma. Let X be a smooth projective variety. Then the morphism . — K, sends
[X] to [X]x-

Proof. There exists an oriented cohomology theory C K (“connective K-theory”, see [Cai08§]
where we set CK = @ c; CKq4,—q) such that CK(Speck) = Z[f], together with mor-
phisms of oriented cohomology theories CK — CH (such that 8 — 0) and CK — K
(such that 8 — t). We thus have morphisms of L-algebras ij — CK s — Ky, such
that [X]cu < [X]cx — [X]x. The morphism CK, — K, is bijective: it is tau-
tologically surjective, and it is the restriction of the injective morphism CK (Speck) =
Z[B][b] — K(Speck) = Z[t,t~1][b]. The statement follows.

Alternatively, one may prove the statement without introducing the theory C' K, using
instead the Riemann—Roch theorem (see [Mer02, Proposition 6.2] for details). O
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3.5.9. Proposition. Let n € Z, and X a smooth projective variety. Then [X] € nlL if
and only if

XX, A" Tx ®--- Q@A ™Tx) €nZ for allm N and (iy,...,i,) € N™.

Proof. Tt follows from the Hattori-Stong Theorem 3.4.3 and Lemma 3.5.8 that [X] € nlL
if and only pX (X (—Tx)) € nZ for all partitions a. By Lemma 3.5.4, this happens if and
only if

Py Qe (Tx),...)) € nZ
for all polynomials @ € Z[c]. We conclude with the lemma below. O
3.5.10. Lemma. Let n,r,d € N. There are polynomials P, R in Z[t,t ][x1,...,2,] such
that for any rank r vector bundle E — X with X € Smy and dim X < d, we have in
K(X)
cn(E) = P([A'E],...,[A"E]) and [A"E]= R(ci(E),...,c.(E)).
Proof. See e.g. [Hau22, Lemma 2.2.12|. The key points are that, for vector bundles F, F'
over X € Smy, we have
cm(E®F) = Y c(E);(F) and A™E®F)~ @ AN(E)®N(E),
i+j=m itj=m
while, when L — X is a line bundle,
a(LY)=t"*1—-[L]) and A'(L)=L.
In addition, by the existence of the formal group law, the datum of ¢; (L") is equivalent

to that of ¢;(L). O

We conclude this section by supplying some information on the structure of the ring
L. For d € N\ {0}, let us define the following integer:
1 if d+ 1 is not a prime power,
Wy =
¢ p if d + 1 is a power of the prime p.

An elementary computation shows that

d+1
(3.5.10.a) Wy = ged ( + )
i<is|(d+1)/2] N *

3.5.11. Proposition. The ring L is polynomial on generators y; € L™ for d € N~ {0}
satisfying c(qy(ya) = wa-

Proof. This can be deduced from purely algebraic considerations on the map L. — Z[b]
of (3.3.3.a); see [AdaT74, II, §7]. O

Conversely, it is not difficult to see that a family ¢4 € L™¢ for d € N~ {0} constitutes a
set of polynomial generators of the ring L if and only if ¢4y (¢a) = twq for each d € N~{0}.

Explicit generators of I can be constructed using the classes of projective spaces and
Milnor hypersurfaces. This follows from (3.5.10.a), since

cay([P]) = —d—1 = _(di 1)
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and when 2 < m < n, settingd =m +n — 1,
d+1
(W) = (“11).

4. EPILOGUE
We are now in position to reformulate Theorem 2.2.5 in terms of cobordism:

4.1. Theorem. Let X be a smooth projective variety with an action of a p-group G.
Assume that one of the following conditions holds:
(i) G is cyclic.
(ii) chark = p.
(#ii) dim X <p— 1.
If [X] ¢ pL, then X© # @.

Proof. In view of Proposition 3.5.9, this follows by applying Theorem 2.2.5 to the G-
equivariant O x-modules F = A Tx ® --- @ A*mT'x. O

4.2. Definition. For n € N~ {0}, we denote by I,(n) the ideal of L generated by the
classes [X], where X runs over the smooth projective varieties of dimension < p"~! — 1
having all Chern numbers divisible by p. So I,(1) = pL, and I,(n) C I,(n + 1). We also
set I,(0) = 0 C L, and I,(o0) = |,, Ip(n).

The next statement bridges the gap between (2.2.5.1) (case r = 1) and (2.1.2.1) (using
the inclusion I, (r) C Ip(00)).

4.3. Theorem (Work in progress). Let G be an abelian p-group of rank r, and X a smooth
projective variety with an action of G. If [ X] ¢ I,(r), then X¢ # @.
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