
p-GROUP ACTIONS AND COBORDISM

OLIVIER HAUTION

Abstract. These are notes for a mini-course given at the University of Regensburg
in September 2022 during the Summer school “Motives in Ratisbona”. The subject is
the study of actions of finite p-groups on algebraic varieties.

We begin by discussing various fixed point theorems, present methods to prove
them, and illustrate them by applications and examples. Among the numerical in-
variants used to detect fixed points are the Chern numbers, whose consideration leads
us to consider the cobordism ring.

We then provide a relatively self-contained account of the construction of the
algebraic cobordism ring (following an elementary approach due to Merkurjev), and
finally illustrate how this ring can be used to interpret the fixed point theorems, and
permits to generalise them.

As prerequisites we assume familiarity with basic algebraic geometry, the Chow
group and K-theory (only K0). These notes contain no new results, but we attempt
to explain in simple terms existing results and gather adequate references.

1. Prologue

In this section, we discuss methods for detecting fixed points using the Euler number.
We refer to the papers [Ser09] and [EN11] for more details and discussions of related
questions.

Let p be a prime number. A finite group is called a p-group if its cardinality is a power
of p. Recall the following basic fact about p-groups:

1.1. Proposition. Let S be a finite set equipped with an action of a p-group G. If the
cardinality |S| is prime to p, then the fixed subset SG is nonempty.

We would like to find a generalisation of this fact to algebraic varieties, instead of finite
sets.

Let us fix a base field k, and call a quasi-projective scheme over k a variety. An action
of a group G on a variety X will mean a group morphism G Ñ AutkpXq. The fixed
locus XG is a closed subscheme of X such that HomkpY,X

Gq “ HomkpY,Xq
G for any

variety Y (it may be defined as the equaliser of the morphisms induced by the actions of
all elements ofG). We say thatG acts freely onX ifXH “ ∅ for all subgroupsH ‰ 1 ofG.

Perhaps the most faithful generalisation of the cardinality of finite sets to higher-
dimensional varieties is the so-called Euler number:

1.2. Definition. The Euler number of a variety X is defined as

χpXq “

2 dimX∑
i“0

p´1qi dimQ`
Hi

ét,cpXk;Q`q ∈ Z.
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Here k denotes an algebraic closure of k, and Hi
ét,cpXk;Q`q the compactly supported

`-adic cohomology groups of the k-variety Xk “ X ˆSpec k Spec k, where ` is a prime
number invertible in k (see e.g. [Mil80])

1.3. Example. If An “ Spec krx1, . . . , xns denotes the n-dimensional affine space over k,
we have χpAnq “ 1, because

Hi
ét,cpAnk ;Q`q “

#

Q` if i “ 2n,

0 if i ‰ 2n.

1.4. Proposition. We have
(i) If Y is closed in X, we have

χpXq “ χpY q ` χpX r Y q.

(ii) χpX ˆ Y q “ χpXq ¨ χpY q.

Proof (sketch). The first statement is a consequence of the long exact localisation se-
quence for compactly supported `-adic cohomology groups [Mil80, III, Remark 1.30], and
the second follows from Künneth theorem [Mil80, VI, Theorem 8.5]. �

1.5. Example. We have χpPnq “ n` 1.

Observe that if f : Y Ñ X is a Zariski-local fibration with fiber F (by this we means
that X admits a covering by open subschemes U such that f´1U ' F ˆU over U), then
it follows from Proposition 1.4 that

χpY q “ χpXqχpF q.

This permits to compute the Euler number of vector bundles, projective bundles or blow-
ups.

The case of étale locally trivial fibrations is more subtle, at least in positive character-
istic:

1.6. Example. Let k be a field of characteristic p ą 0, and consider the morphism
A1 Ñ A1 given by x ÞÑ xp ´ x. This morphism is étale of degree p, but as χpA1q “ 1 we
have χpA1q ‰ pχpA1q.

When a group G acts on a variety X, the variety Y such that HomkpX,T q
G “

HomkpY, T q for any variety T , if it exists, is called the G-quotient of X and denoted
by X{G. The G-quotient always exists when G is finite (see e.g. [SGA1, V, Proposi-
tion 1.8] or [SGA3-1, V, Théorème 4.1(i)], the key point being that our varieties are
quasi-projective). When X “ SpecA is affine, then G acts on the k-algebra A and
X{G “ SpecpAGq.

1.7. Proposition. Let G be a finite group of order prime to the characteristic of k.
Assume that G acts freely on X. Then

χpXq “ |G| ¨ χpX{Gq.

Proof. See [IZ13, §3]. The arguments can already be found in [Ver73] in the topological
setting. The idea is the following: we refine χpXq ∈ Z to a virtual G-representation over
the field Q`, and show that it is a multiple of the regular representation, by computing
its character using Lefschetz trace formula. �
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1.8. Corollary ([Ser09, §7.2]). Assume that p is unequal to the characteristic of k. Let
G be a p-group acting on X. If χpXq is prime to p, then XG ‰ ∅.

Proof. Induction on |G|. If G ‰ 1, then there exists a central subgroup H isomorphic to
Z{p. The group H then acts freely on U “ X rXH , hence χpUq is divisible by p, and so
χpXHq “ χpXq ´ χpUq is prime to p. By induction applied to the G{H-action on XH ,
we deduce that XG “ pXHqG{H ‰ ∅. �

1.9. Example. Since χpAnq “ 1, we see that pAnqG ‰ ∅ for every action of a p-group G
on the affine space An over a field k of characteristic unequal to p. Note that this fails
when k has characteristic p: indeed the translation by any nonzero vector yields an action
of Z{p on An having no fixed point.

The next lemma yields an effective way of computing the Euler number in certain
cases:

1.10. Lemma. Assume that X is smooth and projective of pure dimension d. Then

χpXq “ deg cdpTXq,

where TX is the tangent bundle of X, and cdpTXq its d-th Chern class with values in the
Chow ring CHpXq.

Proof. This follows from the Lefschetz trace formula [Mil80, VI, Theorem 12.3] and the
self intersection formula [Ful98, Example 8.1.12]. �

From this we deduce:

1.11. Lemma. Assume that k has characteristic zero. Let X be a variety. Then X
supports a zero-cycle of degree χpXq.

Proof. This follows from resolution of singularities and a moving lemma, see [Hau17,
Proposition 3.1.4] for details (and a generalisation to positive characteristic). �

In particular if a p-group G acts on X with χpXq prime to p over k of characteristic
zero, the variety XG supports a zero-cycle of degree prime to p.

1.12. Remark. This last fact holds more generally when k has characteristic unequal to
p.

When one has information on the étale cohomology groups ofX (as opposed to knowing
just the number χpXq), more precise methods can be used, for instance:
(i) Lefschetz fixed point theorem (see [Ser09, §7.3]): if G is cyclic of order not divisible

by the characteristic of k, generated by g

χpXGq “

2 dimX∑
i“0

p´1qi Trpg : Hi
ét,cpXk,Q`qq.

In particular when X “ An, then XG ‰ ∅ for such groups G.
(ii) Smith theory (see [Ser09, §7.4]): Let us call a variety Y p-acyclic if H0

etpYk,Fpq “ Fp
and Hi

etpYk,Fpq “ 0 for i ą 0. Assume that G is a p-group acting on X. Then if
X is p-acyclic, so is XG. In particular XG is geometrically connected. This applies
for instance when X “ An.
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The special case X “ An is particularly rich, and can be approached with a variety of
methods. For instance, it is known that pAnqG ' As for some s when n ď 2 and G is a
p-group acting on An with p ‰ char k, but this is an open question for larger n. We refer
to the survey [Kra96] for a discussion of open problems concerning the automorphism
group of the affine space (called the affine Cremona group).

2. Fixed point theorems

2.1. Chern numbers.

2.1.1. Definition. Let X be a smooth projective variety. To a collection pi1, . . . , inq ∈ Nn
corresponds the Chern number

degpci1pTXq ¨ ¨ ¨ cinpTXqq ∈ Z.

Here TX denotes the tangent bundle of X, and the Chern classes cij pTXq take values in
the Chow ring CHpXq.

In particular the Euler number χpXq considered in the previous section is a Chern
number by Lemma 1.10. It might be desirable to detect fixed points using other Chern
numbers, since there are many Chern numbers as opposed to a single Euler number.
There are however some difficulties:

— We must restrict ourselves to (smooth) projective varieties in order to consider
the Chern numbers.

— This tends to breaks the inductive arguments, even if we start with a projective
variety: if X is projective, so is XG, but not X rXG!

— Indeed, we will have to restrict ourselves to the consideration of certain types of
p-groups.

Some results in this direction are gathered in the following statement:

2.1.2. Theorem ([Hau19, (1.1.1)]). Let X be a smooth projective variety with an action
of a p-group G. Assume that one of the following conditions holds:
(i) G is abelian.
(ii) char k “ p.
(iii) dimX ă p.
If a Chern number of X is prime to p, then XG ‰ ∅.

2.1.3. Remark. When p “ 2, the last condition can be replaced with dimX ă 4. This
is because when dimX “ 2 the two Chern numbers of X have the same parity (and one
of them is χpXq), while when dimX “ 3 all Chern numbers are even. With this change,
the statement of Theorem 2.1.2 becomes quite sharp (examples will be discussed later).

2.1.4. Remark. It follows from Theorem 2.1.2 that Corollary 1.8 actually holds in char-
acteristic p, provided that X is projective.

Let us briefly discuss some elements of the proof of Theorem 2.1.2. The case G “ Z{p
is easy, because of the following:

2.1.5. Lemma. Let G be a finite group, and X be a smooth projective variety with a free
G-action. Then Y “ X{G is smooth, and for any i1, . . . , in ∈ N

degpci1pTXq ¨ ¨ ¨ cinpTXqq “ |G| ¨ degpci1pTY q ¨ ¨ ¨ cinpTY qq
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Proof. Indeed, the quotient morphism π : X Ñ Y is étale, hence Y is smooth and TX “
π˚TY . Since π has degree |G|, we have π˚p1q “ |G| in CHpY q, and it follows from the
projection formula that we have in CHpY q

π˚pci1pTXq ¨ ¨ ¨ cinpTXqq “ π˚ ˝ π
˚pci1pTY q ¨ ¨ ¨ cinpTY qq “ |G| ¨ ci1pTY q ¨ ¨ ¨ cinpTY q,

and we conclude by taking degrees. �

Assume now that G is a finite group, and X a variety with a G-action. We con-
sider the equivariant Chow ring CHGpXq, obtained using an algebraic version of Borel’s
construction (see e.g. [EG98]). There is a forgetful morphism CHGpXq Ñ CHpXq,
and the Chern classes of G-equivariant vector bundles lift to CHGpXq. In particular,
when X is smooth and projective, its Chern numbers are in the image of the composite
CHGpXq Ñ CHpXq

deg
ÝÝÑ Z.

In general, the elements of CHGpXq are not represented by G-invariant closed sub-
schemes of X, but rather by Z-linear combination of G-invariant closed subschemes of
X ˆ V , where V runs over the finite-dimensional G-representations. However:

2.1.6. Lemma. Assume that G is trigonalisable over k, i.e. every G-representation over
k admits a subrepresentation of codimension one. Then the image of CHGpXq Ñ CHpXq
is the subgroup generated by classes of G-invariant closed subschemes of X.

Sketch of proof. For a variety Y , denote by ZpY q the group of cycles on Y , and if G
acts on Y by ZGpY q ⊂ ZpY q the subgroup generated by classes of G-invariant closed
subschemes. Let V be a finite-dimensional G-representation. Then the composite

ZGpX ˆ V q Ñ CHGpXq Ñ CHpXq

coincides with

ZGpX ˆ V q Ñ ZpX ˆ V q Ñ CHpX ˆ V q Ñ CHpXq.

Let V 1 ⊂ V be a codimension one subrepresentation. Then one shows that the image of

ZGpX ˆ V q Ñ ZpX ˆ V q Ñ CHpX ˆ V q Ñ CHpX ˆ V 1q

is contained in the image of

ZGpX ˆ V 1q Ñ ZpX ˆ V 1q Ñ CHpX ˆ V 1q

(using the explicit description of the intersection with a divisor in the Chow group, and
the fact that X ˆ V 1 ⊂ X ˆ V is a principal divisor), and we conclude by induction on
dimV . �

To prove Theorem 2.1.2, we may assume that k is algebraically closed. Then under
the condition (i) or (ii), the group G is trigonalisable over k, hence by Lemma 2.1.6 and
the assumption on the Chern numbers of X, there exists a G-invariant closed subscheme
in X having degree prime to p. Since G is a p-group, this is only possible if XG ‰ ∅.

2.2. Coherent Euler characteristics.

2.2.1. Example. Assume that X is a smooth connected projective variety of dimension
1. Then the only Chern number of X is

deg c1pTXq “ 2p1´ gq,

where g is the geometric genus of X. In particular all Chern numbers of X are even, and
therefore Theorem 2.1.2 becomes empty for such X when p “ 2.
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In the situation of Example 2.2.1, we would rather like to use the parity of the genus
g to detect fixed points of 2-groups. Let us first generalise the genus of curves to higher
dimensional varieties:

2.2.2. Definition. Let X be a projective k-variety. The Euler characteristic of a coherent
OX -module F is defined as the integer

(2.2.2.a) χpX,Fq “
dimX∑
i“0

p´1qi dimkH
ipX,Fq ∈ Z.

In particular we obtain an invariant χpX,OXq ∈ Z. When X is smooth and projective,
this invariant is not a Z-linear combination of Chern numbers. However we have the
Hirzebruch–Riemann–Roch formula

χpX,OXq “ deg TdpTXq ∈ Q,
where TdpTXq ∈ CHpXq b Q is the so-called Todd class. So χpX,OXq is a Q-linear
combination of Chern numbers, which happens to take integral values on all smooth
projective varieties X.

2.2.3. Proposition. The integer χpX,OXq is a birational invariant of the smooth pro-
jective variety X.

Proof. In fact, the groups HipX,OXq themselves are birational invariants, see e.g. [CR11,
Theorem 3.2.8]. �

2.2.4. Proposition. When X,Y are smooth projective varieties, we have

χpX ˆ Y,OXˆY q “ χpX,OXq ¨ χpY,OY q.

Proof. See e.g. [Ful98, Example 15.2.12]. �

2.2.5. Theorem ([Hau19, (1.2.1)]). Let X be a projective variety with an action of a
p-group G. Assume that one of the following conditions holds:
(i) G is cyclic.
(ii) char k “ p.
(iii) dimX ă p´ 1.
If F is a G-equivariant coherent OX-module such that χpX,Fq is prime to p, then XG ‰

∅.

2.2.6. Remark. The OX -module OX itself is G-equivariant. Note that χpX,OXq “ 1
when X is a geometrically connected and HipX,OXq “ 0 for i ą 0. This happens for
instance X is rational, or char k “ 0 and X is rationally connected (which means that
two general points are contained in a rational curve). In this case, the result (i) of The-
orem 2.2.5 is a consequence of a Lefschetz fixed-point theorem for coherent cohomology,
and (ii) follows from Smith theory.

The next examples illustrate the sharpness of the conditions:

2.2.7. Example. Assume that char k ‰ 2. Consider the involutions of P1 given by
σ : rx : ys ÞÑ ry : xs and τ : rx : ys ÞÑ r´x : ys. These involutions commute with one
another, giving an action of G “ Z{2ˆZ{2 on P1. The fixed points of σ are r1 : 1s, r1 : ´1s,
and those of τ are r1 : 0s, r0 : 1s, hence G has no fixed point on P1. On the other hand,
we have χpX,OXq “ 1.
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2.2.8. Example. Let G be a nonabelian p-group, where k has characteristic ‰ p. Then
there exists an irreducible G-representation V of dimension pn with n ą 0. When G
has order p3, then n “ 1. The k-variety X “ PpV q with its induced G-action satisfies
XG “ ∅. We have χpX,OXq “ 1 and dimX “ pn ´ 1. The blow-up Y of PpV ‘ 1q at
the point Pp1q has a natural G-action without fixed points, and a Chern number of Y is
prime to p when p ‰ 2 (namely degpc1pTY q

pnq).

The proof of the next statement illustrates how the existence of fixed points can be
used to prove properties of automorphisms groups of varieties:

2.2.9.Corollary ([Xu20]). Assume that k is algebraically closed of characteristic zero. Let
X be a rationally connected variety of dimension n. Assume that the group of birational
automorphisms BirpXq contains a subgroup G, which is a p-group for p ą n` 1. Then G
is abelian of rank at most n.

Proof (sketch). Using equivariant resolution of singularities, we may assume that X is
smooth projective and that G ⊂ AutpXq. This procedure does not change the fact that
X is rationally connected, and so we have χpX,OXq “ 1. Then X admits a G-fixed
point x by Theorem 2.2.5. One may then prove that the G-action on the tangent space
TX,x is faithful (using the fact that G is finite and k has characteristic zero, see [Pop14,
Lemma 4]). Since p ą n “ dimk TX,x and G is a p-group, we deduce that TX,x contains
no irreducible representation of dimension ą 1 (irreducible representations of p-groups
have dimension a power of p). Therefore G has a faithful representation of dimension n,
which is a direct sum of 1-dimensional representations, and the result follows. �

2.3. Grothendieck groups. Let us now discuss the proof of (i) and (iii) in Theo-
rem 2.2.5. When X is a variety, we denote by K 10pXq the Grothendieck group of coherent
OX -modules. It is defined as the quotient of the free abelian group on classes of coherent
OX -modules, modulo the relations rF2s “ rF1s ` rF3s whenever

0 Ñ F1 Ñ F2 Ñ F3 Ñ 0

is an exact sequence of coherent OX -modules. If f : Y Ñ X is a flat morphism, then
pulling back coherent OX -modules along f induces a group morphism f˚ : K 10pXq Ñ
K 10pXq. If f : Y Ñ X is a projective morphism (not necessarily flat), setting

f˚rFs “
∑
i

p´1qirRf i˚Fs

induces a push-forward map f˚ : K 10pY q Ñ K 10pXq. Note that, when p : X Ñ Spec k is
projective, we have p˚rFs “ χpX,Fq ∈ K 10pSpec kq “ Z.

As above, the case G “ Z{p is easy:

2.3.1. Lemma. Let X be a projective variety with a free G-action, and denote by π : X Ñ

Y “ X{G the G-quotient. Then for any coherent OY -module F we have

χpX,π˚Fq “ |G| ¨ χpY,Fq.

Proof. We proceed by induction on the dimension of the support of F . Since the group
K 10pY q is generated by classes rOZs, where Z ⊂ Y is a closed subscheme, replacing X
with X ˆY Z, we may assume that F “ OY . Let d “ |G|. As d ‰ 0, it will suffice to
prove the statement for F “ pOY q‘d instead. Then rπ˚OX s´rpOY q‘ds ∈ K 10pY q belongs
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to the subgroup generated by classes of OY -modules supported in codimension at least
one, hence by induction it will suffice to prove the statement for F “ π˚OX .

As the G-action on X is free, we have a cartesian square

GˆX
a //

p

��

X

π

��
X

π // Y

where a is the action morphism and p the projection to the second factor. We view G as
scheme, the disjoint union of d copies of Spec k. Then

π˚π˚OX ' p˚a˚OX “ p˚OGˆX “ pOXq‘d,
hence χpX,π˚π˚OXq “ d ¨ χpX,OXq “ d ¨ χpY, π˚OX , as required. �

Let G be a finite group and X a projective variety with a G-action. Proceeding as
above, we define the Grothendieck group ofG-equivariant coherentOX -modulesK 10pX;Gq.
We let p be a prime number, and define

(2.3.1.a) dppX;Gq “ impK 10pX;Gq Ñ K 10pXq
χpX,´q
ÝÝÝÝÝÑ ZÑ Fpq.

The following observation will be crucial:

2.3.2. Lemma. Let H ⊂ G a central subgroup acting trivially on X. Assume that k is
algebraically closed. Then dppX;Gq “ dppX;G{Hq.

Proof. We let F be a G-equivariant coherent OX -module such that χpX,Fq is prime
to p, and show that there exists a G{H-equivariant coherent OX -module G such that
χpX,Gq is prime to p. As H ⊂ G is central and k contains enough roots of unity, the
OX -module F admits a G-equivariant decomposition F “

À

h Fh, where h runs over
the characters of H, and H acts on Fh via h. We may thus assume that H acts on F
through a single character h. As χpX,Fq is prime to p, there is an integer i such that
dimkH

ipX,Fq is prime to p. Set V “ HipX,Fq. Then H acts trivially on G “ F b V _,
and χpX,Gq “ χpX,Fq ¨ dimk V

_ is prime to p. �

2.3.3. Lemma. Let G be a cyclic p-group, and H ⊂ G a subgroup such that H ‰ G. Let
X be a variety with an action of G, and set Y “ X{H. Then the morphism XG Ñ Y G

is surjective.

Proof. LetK be an algebraically closed field, and consider y ∈ Y GpKq. Since the quotient
X Ñ Y is surjective (see [SGA1, V, Proposition 1.1 (ii)]), we may find x ∈ XpKq mapping
to y. Let g ∈ G be a generator. As g ¨ y “ y, we may find h ∈ H such that g ¨ x “ h ¨ x
(the fibers of X Ñ Y are the H-orbits, see [SGA1, V, Proposition 1.1 (ii)]). But h “ gpu

for some u ∈ Z, hence x is fixed by gh´1 “ g1´pu, which is a generator of G. Thus
x ∈ XGpKq, as required. �

We can now prove (i) in Theorem 2.2.5: If G ‰ 1, letH ⊂ G be the subgroup of index p.
Consider the quotient morphism ϕ : X Ñ Y “ X{H. If XG “ ∅, then Y G “ Y G{H “ ∅
by the Lemma 2.3.3. If dppX;Gq ‰ 0, then dppY ;Gq ‰ 0, hence dppY ;G{Hq ‰ 0 by
Lemma 2.3.2. We may thus replace X with Y and G with G{H, and thus assume that
G ' Z{p. This case was treated in Lemma 2.3.1.
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We now discuss the proof of (iii) in Theorem 2.2.5. Let G be a finite group and X a
variety with a G-action. Besides K 10pX;Gq, one may also consider an equivariant theory
constructed using Borel’s construction (similar to the equivariant Chow ring CHGpXq
mentioned above). However will be more useful to consider a simpler theory:

2.3.4.Definition. Let V be the regular representation of G over k. We let T “ Spec kpV q,
and consider the field K “ kpV qG. Viewing the scheme pX ˆT q{G as a K-variety, we set

KGpXq “ K 10ppX ˆ T q{Gq.

2.3.5.Remark. In the definition ofKGpXq, we may replace V with any finite-dimensional,
generically free G-representation, and obtain a canonically isomorphic group KGpXq.

2.3.6. Proposition. The forgetful morphism factors as K 10pX;Gq Ñ KGpXq Ñ K 10pXq,
where the morphism KGpXq Ñ K 10pXq is surjective.

Proof. We have morphisms (recall T is the spectrum of a purely transcendental extension)

KGpXq “ K 10ppX ˆ T q{Gq Ñ K 10pX ˆ T q ' K 10pXq.
and

K 10pX;Gq
α
ÝÑ K 10pX ˆ V ;Gq

β
ÝÑ K 10pX ˆ T ;Gq ' K 10ppX ˆ T q{Gq “ KGpXq,

whose composite is the canonical morphism K 10pX;Gq Ñ K 10pXq. Here α is surjective by
equivariant homotopy invariance, and β is so by the equivariant localisation sequence. �

2.3.7. Remark. Observe that the morphism KGpSpec kq Ñ K 10pSpec kq “ Z is bijective,
so in a sense KG is much closer to K 10 than is K 10p´;Gq.

Note that Proposition 2.3.6 implies that

(2.3.7.a) dppX;Gq “ impKGpXq Ñ K 10pXq
χpX,´q
ÝÝÝÝÝÑ ZÑ Fpq.

2.3.8. Proposition. The group KGpXq is endowed with a filtration

¨ ¨ ¨ ⊂ KGpXqpn´1q ⊂ KGpXqpnq ⊂ . . .
vanishing in negative degrees, which is compatible with the topological filtration of K 10pXq
(by codimension of supports), via the morphism KGpXq Ñ K 10pXq.

Proof. The filtration is induced by the topological filtration on K 10ppX ˆ T q{Gq. �

The theory KG has flat pullbacks and projective pushforwards along G-equivariant
morphisms. In addition, it satisfies the localisation axiom:

2.3.9. Lemma. Let i : Y Ñ X be the immersion of a G-invariant closed subscheme, and
u : U Ñ X its open complement. Then the following sequence is exact:

KGpY q
i˚
ÝÑ KGpXq

u˚

ÝÝÑ KGpUq Ñ 0.

Let us put ourselves in the situation of (iii) in Theorem 2.2.5. We assume that char k ‰
p and G ‰ 1. Then the group G contains a central subgroup H isomorphic to Z{p. Let
Y “ X{H, U “ X rXH and V “ U{H. We thus have a commutative diagram

XH

j !!

i // X

π

��

U
uoo

φ

��
Y V

voo
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Here the square is cartesian, and i, j are closed immersions (as char k ‰ p).

2.3.10. Lemma. The morphism φ˚ : KGpV q Ñ KGpUq is surjective.

Proof. Since the H-action on U is free, the category of G-equivariant coherent OU -
modules is naturally equivalent to that of G{H-equivariant coherent OV -modules, in-
ducing an isomorphism K 10pV ;G{Hq Ñ K 10pU ;Gq. This isomorphism factors through the
morphism φ˚ : K 10pV ;Gq Ñ K 10pU ;Gq, hence the latter is surjective. Since K 10pU ;Gq Ñ
KGpUq is surjective by Proposition 2.3.6, the lemma follows. �

2.3.11. Lemma. Assume that k contains a primitive p-th root of unity. Then

φ˚ ˝ φ
˚
`

KGpV q
˘

⊂ pKGpV q.

Proof. The assumption implies that H is isomorphic as an algebraic group to µp; let us
fix such an isomorphism. Then the G-equivariant OV -module φ˚OU is Z{p-graded, and
the fact that the G-action on U is free implies the existence of an invertible OU -module
L and of a G-equivariant decomposition (recall that H is assumed to be central in G)

φ˚OU “
p´1
à

i“0

Lbi,

Then we compute (as πU is finite, the higher direct images Riφ˚ vanish for i ą 0), for
any β ∈ KGpV q (we use the projection formula)

φ˚ ˝ φ
˚pβq “

p´1∑
i“0

rLsi X β,

where X refers to the natural action of the Grothendieck group K0pV ;Gq of G-equivariant
locally free coherent OX -modules on KGpV q. Now, in K0pV ;Gq we have

p´1∑
i“0

rLsi “ p1´ rLsqp´1 ` p ¨QprLsq,

for some polynomial Q ∈ Zrxs. It is not difficult to see that p1 ´ rLsq X KGpV qpnq ⊂
KGpV qpn´1q for every n. As dimV ď p´2 by assumption and KGpV qpnq “ 0 when n ă 0
by Proposition 2.3.6, the statement follows. �

Consider now the commutative diagram

KGpXq
u˚

//

π˚

��

KGpUq

φ˚

��
KGpX

Hq
j˚ // KGpY q

v˚

// KGpV q // 0

where the lower row is an exact sequence by Lemma 2.3.9. A diagram chase using
Lemma 2.3.10 and Lemma 2.3.11 then shows that

π˚KGpXq “ j˚KGpX
Hq mod p.

Thus, in view of (2.3.7.a), it follows that (see (2.3.1.a))

dppX;Gq “ dppX
H ;Gq.

We conclude the proof by induction on |G|, using Lemma 2.3.2.
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3. The cobordism ring

3.1. Oriented cohomology theories. Recall that k is a field. We denote by Smk the
category of smooth quasi-projective k-schemes.

3.1.1.Definition (Oriented cohomology theories, see [LM07, Definition 1.1.2]). A functor
H from Smop

k to the category of Z-graded commutative rings, together with a group
morphism fH˚ : HpY q Ñ HpXq for each projective morphism f : Y Ñ X in Smk, is called
an oriented cohomology theory if the conditions (i)–(vii) below are satisfied. We write
f˚H instead of Hpfq when f is a morphism in Smk, and denote by Hn

pXq the degree n
component of HpXq.
(i) If X,Y ∈ Smk are connected and f : Y Ñ X is a projective morphism, then fH˚ is

homogeneous of degree dimX ´ dimY .
(ii) (“Projection formula”) If f : Y Ñ X is a projective morphism in Smk, then fH˚ paf˚Hpbqq “

fH˚ paqb for any a ∈ HpY q, b ∈ HpXq.
(iii) (“Functoriality of push-fowards”) If X ∈ Smk, then pidXq˚ “ idHpXq. If f : Y Ñ X

and g : Z Ñ Y are projective morphisms in Smk, then fH˚ ˝ gH˚ “ pf ˝ gqH˚ .
(iv) (“Additivity”) For any X,Y ∈ Smk the natural morphism HpX\Y q Ñ HpXqˆHpY q

is bijective.
(v) (“Base-change formula”) Given a transverse square in Smk

W
h //

e

��

Z

g

��
Y

f // X

with f projective, we have

hH˚ ˝ e
˚
H “ g˚H ˝ f

H
˚ .

(The transverse condition means that the square above is cartesian, and that for
every connected component W0 of W , denoting by Y0, Z0, X0 the connected compo-
nents of Y,Z,X containing the images of W0,

dimW0 ` dimX0 “ dimY0 ` dimZ0.q

(vi) (“Projective bundle Theorem”) Let E be a rank r vector bundle over X ∈ Smk and
p : PpEq Ñ X the associated projective bundle. Denote by s : PpEq Ñ OPpEqp1q the
zero-section of the canonical bundle, and write ξ “ s˚H ˝ s

H
˚ p1q ∈ H1

pPpEqq. Then
1, ξ, . . . , ξr´1 is a basis of the HpXq-module HpPpEqq (for the structure induced by
p˚H).

(vii) (“Homotopy invariance”) Let p : V Ñ X in Smk be an affine bundle (i.e. a torsor
under a vector bundle over X). Then p˚H : HpXq Ñ HpV q is bijective.

3.1.2. Remark. There is no “localisation axiom”.

3.1.3. Example. The Chow ring CH is an example of oriented cohomology theory. An-
other example is given by the Grothendieck group of coherent modules. Indeed when
X ∈ Smk the group K 10pXq may be identified with the Grothendieck group of locally
free coherent OX -modules, which endows it with a ring structure, and permits to define
pullbacks along arbitrary morphisms in Smk. For X ∈ Smk we set KpXq “ K 10pXqrt, t

´1s

where t has degree ´1. Pullbacks in K are induced by those in K 10. If f : Y Ñ X is a
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projective morphism of pure codimension d in Smk, the push-forward KpY q Ñ KpXq is
induced by

xti ÞÑ f˚pxqt
i´d.

One then checks we thus define an oriented cohomology theory K.

For the rest of this section, we fix an oriented cohomology theory H.

3.1.4.Definition. Let V be a vector bundle of rank r overX ∈ Smk. Using the notation of
(3.1.1.vi) for E “ V _, the Chern classes cHi pV q ∈ Hi

pXq are defined using Grothendieck’s
method [Gro58] by setting

cH0 pV q “ 1 and cHi pV q “ 0 if i R t0, . . . , ru,

and
r∑
i“0

p´1qip˚H
`

cHi pV q
˘

ξr´i “ 0 ∈ Hr
pPpEqq.

We will use the simplified notation f˚, f˚, ci instead of fH˚ , f˚H, c
H
i when no confusion

seems likely to arise. If j : Y Ñ X is a closed immersion in Smk, we will write rY s “
j˚p1q ∈ HpXq.

3.1.5. Remark. When LÑ X is a line bundle, and s : X Ñ L its zero-section, it follows
from the definition that

c1pLq “ s˚ ˝ s˚p1q ∈ H1
pXq.

In particular, in the notation of (3.1.1.vi) we have ξ “ c1pOp1qq.
Assume now that Z ∈ Smk is the zero-locus in X of a section of L transverse to

the zero-section z : X Ñ L (in the sense of (3.1.1.v)). Then by homotopy invariance
(3.1.1.vii), we have z˚ “ s˚ : HpLq Ñ HpXq, hence by the base-change axiom (3.1.1.v),
we deduce that

(3.1.5.a) c1pLq “ rZs.

In particular we have, for any s ∈ N (writing Pi “ ∅ for i ă 0)

(3.1.5.b) c1pOp1qqs “ rPn´ss ∈ Hs
pPnq,

where Pn´s ⊂ Pn is any linear embedding.

3.1.6. (Splitting principle) Let E be a vector bundle of rank r over X ∈ Smk. Consider
the projective bundle p : PpE_q Ñ X. Then the pullback p˚ : HpXq Ñ HpPpE_qq by the
axiom (3.1.1.vi), and we have an exact sequence of vector bundles over PpE_q

0 Ñ U Ñ p˚E Ñ Op1q Ñ 0,

where U is a vector bundle of rank r ´ 1 over PpE_q. Iterating, we see that there
exists a composite of projective bundles q : P Ñ X such that q˚E admits a filtra-
tion by subbundles whose successive quotients are line bundles. Note that the pullback
q˚ : HpXq Ñ HpP q is then injective.

3.1.7. Lemma. Let LÑ X be a line bundle. Then the element c1pLq ∈ HpXq is nilpotent.

Proof. By Jouanolou’s trick (see [Jou73, Lemme 1.5]), there exists an affine variety X 1
and an affine bundle f : X 1 Ñ X. Since f˚ : HpXq Ñ HpX 1q is injective by (3.1.1.vii),
we may replace X with X 1, and thus assume that X is affine. Then the line bundle L
is generated by global sections, hence there exists a morphism f : X Ñ Pn such that
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f˚Op1q ' L. We may thus assume that X “ Pn and L “ Op1q. Then by (3.1.5.b) the
class c1pLqs “ rPn´ss ∈ HpPnq vanishes for s “ n` 1. �

3.2. The formal group law.

3.2.1. Definition. Let R be a commutative ring. A (commutative, one-dimensional)
formal group law over R is a power series F ∈ Rrrx, yss such that:
(i) F px, yq “ F py, xq ∈ Rrrx, yss,
(ii) F px, 0q “ x ∈ Rrrxss,
(iii) F px, F py, zqq “ F pF px, yq, zq ∈ Rrrx, y, zss.

3.2.2. Remark. From the axioms, we deduce that a formal group law F ∈ Rrrx, yss must
be of the form

F “ x` y `
∑
i,jě1

ai,jx
iyj , with ai,j “ aj,i ∈ R.

There exists a ring L (the “Lazard ring”) endowed with a formal group law U ∈ Lrrx, yss,
which is universal in the following sense: for every formal group law F over a ring R,
there exists a unique ring morphism f : LÑ R mapping the power series U ∈ Lrrx, yss to
F ∈ Rrrx, yss.

3.2.3. Theorem. There exists a power series

FHpx, yq “
∑
i,j∈N

ai,jx
iyj ∈ HpSpec kqrrx, yss

with ai,j ∈ H1´i´j
pSpec kq such that for any line bundles L,M over X ∈ Smk

(3.2.3.a) cH1 pLbMq “ FHpc
H
1 pLq, c

H
1 pMqq ∈ HpXq.

Moreover the power series FH is a formal group law over HpSpec kq.

Proof (sketch). Let m,n ∈ N. By the axiom (3.1.1.vi), the HpSpec kq-module HpPmˆPnq
is freely generated by the classes c1pOp1, 0qqic1pOp0, 1qqj for 0 ď i ď m and 0 ď j ď n.
Therefore there are unique elements am,ni,j ∈ H1´i´j

pSpec kq such that

(3.2.3.b) c1pOp1, 1qq “
m∑
i“0

n∑
j“0

am,ni,j c1pOp1, 0qqic1pOp0, 1qqj

Next, one checks that ai,j “ am,ni,j does not depend on m,n as long as i ď m and j ď n,
and that the resulting power series

FHpx, yq “
∑
i,j

ai,jx
iyj .

is actually a formal group law (details omitted, see [LM07, Corollary 4.1.8]).
Now let L,M be line bundles over X ∈ Smk, and let us show the formula (3.2.3.a).

By Jouanolou’s trick (see [Jou73, Lemme 1.5]), we may assume that X is affine. Then
the line bundles L,M are generated by global sections, and thus there exists a morphism
f : X Ñ Pm ˆ Pn for some m,n such that f˚Op1, 0q ' L and f˚Op0, 1q ' M . We
conclude by applying f˚ to the equation (3.2.3.b). �

3.2.4. Definition. The power series FH of Theorem 3.2.3 will be called the formal group
law of the oriented cohomology theory H.
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3.2.5. Example. We have FCHpx, yq “ x` y and FKpx, yq “ x` y ´ txy.

3.2.6. Lemma. Let E be a vector bundle over X ∈ Smk. Assume that E admits a
filtration by subbundles whose successive quotients are line bundles L1, . . . , Lr. Then for
any i ∈ N

cipEq “ σipc1pL1q, . . . , c1pLrqq,

where σi denotes the i-th elementary symmetric polynomial in r variables.

Proof. Let p : PpE_q Ñ X be the projective bundle. In view of the definition of the Chern
classes, it will suffice to prove that

r
ź

i“1

pc1pOp1qq ´ p˚c1pLiqq “ 0 ∈ HpPpE_qq.

We proceed by induction on the rank r of E. Using Theorem 3.2.3, we have

c1pOp1qq “ c1pp
˚Lr b p

˚L_r p1qq “ p˚c1pLrq ` c1pp
˚L_r p1qqg ∈ HpPpE_qq,

where
g “

∑
iě0,jě1

ai,jc1pp
˚Lrq

ic1pp
˚L_r p1qq

j´1 ∈ HpPpE_qq.

Let E1 “ E{Lr. Observe that the closed immersion j : PpE1_q Ñ PpE_q is the zero-locus
of a section of the line bundle p˚L_r p1q transverse to the zero-section (in the sense of
(3.1.1.v)), so that c1pp˚L_r p1qq “ rPpE1_qs ∈ HpPpE_qq. Thus c1pOp1qq ´ p˚c1pLrq “
rPpE1_qs ¨ g, and so

r
ź

i“1

pc1pOp1qq ´ p˚c1pLiqq “ j˚

´

j˚g ¨
r´1
ź

i“1

pc1pOp1qq ´ p1˚c1pLiqq
¯

,

where p1 : PpE1_q Ñ X is the projective bundle, which vanishes by induction. �

3.2.7. Remark. From Lemma 3.2.6, one easily deduces the Whitney sum formula ex-
pressing the behaviour of Chern classes with respect to exact sequences of vector bundles.

3.3. Constructing new theories. In this section H is an oriented cohomology theory.
When R is a Z-graded ring, we denote by Rrbs the polynomial ring over R in the variables
bi for i ∈ Nr t0u. The ring Rrbs is Z-graded by letting bi have degree ´i.

Consider the power series (where b0 “ 1)

πpxq “
∑
i∈N

bix
i ∈ Zrbsrrxss.

3.3.1. Proposition. There is a unique way to define for every vector bundle E Ñ X in
Smk an invertible element PHpEq ∈ HpXqrbsˆ in such way that:
(i) f˚PHpEq “ PHpf˚Eq for any morphism f : Y Ñ X in Smk and vector bundle

E Ñ X,
(ii) PHpLq “ πpc1pLqq when L is a line bundle over X ∈ Smk,
(iii) if 0 Ñ E1 Ñ E2 Ñ E3 Ñ 0 is an exact sequence of vector bundles over X ∈ Smk,

then PHpE2q “ PHpE1q ¨ P
HpE3q.
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Proof. Uniqueness follows from the splitting principle. Next note that, if L is a line
bundle over X ∈ Smk, then πpc1pLqq ∈ HpXqrbs by Lemma 3.1.7. Let E be a vector
bundle over X ∈ Smk, and let us construct the element PHpEq. We may assume that E
has constant rank r. By the splitting principle, we may find a composite of projective
bundles q : P Ñ X such that q˚E admits a filtration by subbundles whose successive
quotients are line bundles L1, . . . , Lr. Then q˚ : HpXq Ñ HpP q is injective. The element

(3.3.1.a)
r
ź

i“1

πpc1pq
˚Liqq ∈ HpP qrbs

is a symmetric polynomial in the variables c1pL1q, . . . , c1pLrq, hence a Z-linear combi-
nation of elementary symmetric polynomials in these variables. By Lemma 3.2.6 the
element (3.3.1.a) is a polynomial in the Chern classes of q˚E, hence is the image of a
unique element PHpEq under the pullback q˚ : HpXqrbs Ñ HpP qrbs. It is easy to verify
that the element PHpEq depends neither on the choice of the filtration, nor on the choice
of q : P Ñ X (the key point being that the base-change of a projective bundle remains
one), and that the conditions (i) and (ii) are verified.

Moreover observe that the element (3.3.1.a) is invertible in HpP qrbs (because πp0q “ 1),
and that its inverse is again a symmetric polynomial in c1pL1q, . . . , c1pLrq, and so as
above the inverse is the pullback of a unique element of HpXqrbs, which yields an inverse
of PHpEq in HpXqrbs, because q˚ is injective.

Finally to prove (iii), we find a composite of projective bundles q : P Ñ X such that
q˚E1 and q˚E3 admit filtrations by subbundles whose successive quotients are line bundles
(see (3.1.6)). This induces a filtration of q˚E2 where quotients are line bundles, and it is
easy to verify that PHpE2q “ PHpE1q ¨ P

HpE3q. �

3.3.2. Definition. The assignment PH of Proposition 3.3.1 extends uniquely to a group
morphism

PH : K0pXq Ñ HpXqrbsˆ,

where K0pXq denotes the Grothendieck group of vector bundles over X ∈ Smk.
For X ∈ Smk we set HpXq “ HpXqrbs and for a morphism f : Y Ñ X in Smk we let

f˚H : HpXq Ñ HpY q be the map induced by f˚H. If f is projective, for any a ∈ HpY q we
set

f
H
˚ paq “ fH˚ pP

Hpf˚TX ´ TY qaq ∈ HpXq.

3.3.3. Proposition. The functor H, together with the above defined pushforwards, is an
oriented cohomology theory.

Proof. See [LM07, §7.4.2] or [Mer02, Proposition 4.3]. �

The formal group law of H can be derived from that of H as follows. Consider the
power series (where b0 “ 1)

exppxq “ xπpxq “
∑
i∈N

bix
i`1 ∈ Zrbsrrxss.

Observe that, if L is a line bundle over X ∈ Smk, then

c
H
1 pLq “ exppcH1 pLqq ∈ HpXq.

Denoting by log the composition inverse of exp, we thus have in HpSpec kqrrx, yss

FHpx, yq “ exppFHplogpxq, logpyqqq.
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Taking H “ CH, this yields a ring morphism

(3.3.3.a) LÑ CHpSpec kq “ Zrbs.

which classifies the formal group law expplog x ` log yq. Purely algebraic considerations
can be used to show that the morphism (3.3.3.a) is injective (see [Ada74, II, §7]).

3.4. The cohomology of the point. In this section, we will describe the image of the
morphism (3.3.3.a).

3.4.1. Definition. Let H is oriented cohomology theory. When X is a smooth projective
variety, we will denote by JXKH ∈ HpSpec kq the element pH˚ p1q, where p : X Ñ Spec k is
the structural morphism. In addition, we will denote by Hf ⊂ HpSpec kq the subgroup
generated by the classes JXKH, where X runs over the smooth projective varieties.

Note that Hf is a graded subring of HpSpec kq.

3.4.2. Example. We have CHf “ Z and Kf “ Zrts ⊂ Zrt, t´1s.

The inclusion CHf ⊂ CHpSpec kq “ Zrbs is not surjective (as we will see later, this is
related to the fact already observed that certain Chern numbers are always divisible by
certain integers), and moreover admits no retraction. The situation improves somewhat
if we consider K-theory instead of Chow groups:

3.4.3. Theorem (Hattori–Stong). The morphism of graded groups

Kf ⊂ KpSpec kq “ Zrt, t´1srbs

admits a retraction.

Proof. See [Mer02, Proposition 7.16 (1)]. In brief, there are two steps:
(i) Observe that the subring Kf ⊂ Zrt, t´1srbs is contained in Zrtsrbs. Then using the

Riemann–Roch theorem, show that the morphism Zrtsrbs Ñ Zrbs given by t ÞÑ 0

induces an isomorphism Kf
„
ÝÑ CHf . Since CHf ⊂ Zrbs, this implies that for each

integer d the homogeneous component K´df is a free abelian group of rank bounded
by the number of monomials of degree ´d in Zrbs.

(ii) For each prime number p and integer n ∈ Nrt0u, construct an n-dimensional smooth
projective variety Mp

n, in such a way that the classes of JMp
α1
ˆ¨ ¨ ¨ˆMp

αm
KK , where

bα1
¨ ¨ ¨ bαm

runs over the monomials of degree ´d, have Fp-linearly independent
images in Fprt, t´1srbs, for each d ∈ Nr t0u.

Combining the two steps shows that for each prime p the morphism Kf {pÑ Fprt, t´1srbs
is injective, which implies the theorem. �

3.4.4. Remark. The retraction is not a ring morphism!

3.4.5. Example. (Milnor hypersurfaces.) Let 0 ď m ď n be integers. Denote by Um the
kernel of the canonical epimorphism 1‘m`1 Ñ Op1q of vector bundles over Pm, and set
Hm,n “ PPmpUm ‘ 1‘n´mq. Then Hm,n is a smooth hypersurface in Pm ˆ Pn defined by
the vanishing of a section of the line bundle Op1, 1q which is transverse to the zero-section
(in the sense of (3.1.1.v)).

3.4.6. Lemma. Let H be an oriented cohomology theory. The coefficients am,n ∈ HpSpec kq
of the formal group law FH belong to the subring Hf .
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Proof. We proceed by induction on m ` n. By symmetry we may assume that m ď n.
Consider the Milnor hypersurface Hm,n ⊂ Pm ˆ Pn. Then by (3.1.5.a), (3.1.5.b) and
(3.1.5.b)

(3.4.6.a) rHm,ns “ c1pOp1, 1qq “
∑

0ďi`jďm`n

ai,jrPm´i ˆ Pn´js ∈ HpPm ˆ Pnq.

Pushing forward along Pm Ñ Pn yields in HpSpec kq

am,n “ JHm,nKH ´
∑

0ďi`jďm`n´1

ai,j ¨ JPm´i ˆ Pn´jKH

and we conclude by induction. �

3.4.7. Remark. The proof of Lemma 3.4.6 in fact shows that the coefficients am,n are
polynomials in the classes of Milnor hypersurfaces and projective spaces.

It follows from Lemma 3.4.6 that the morphism LÑ HpSpec kq classifying the formal
group law of H has image contained in the subring Hf . One may further prove:

3.4.8. Theorem. If H “ CH or H “ K, then the ring morphism LÑ Hf is bijective.

Proof. See [Mer02, Proposition 6.2 (2), Theorem 8.2]. Roughly speaking the steps are
the following:
(i) As already mentioned, the morphism LÑ CHf is injective.
(ii) Using the Riemann–Roch theorem, one shows that there exists an isomorphism of

L-algebras Kf ' CHf , compatibly with the classes of smooth projective varieties
(Lemma 3.5.8 below).

(iii) From the proof of Theorem 3.4.3, we see that the classes JMp
nKK , where p runs over

the prime numbers and n over Nr t0u, generate the ring Kf .
(iv) Each variety Mp

n is a hypersurface in a product of projective spaces, hence its class
in JMp

nKK ∈ Kf belongs to the L-algebra generated by classes of projective spaces
(arguing as in Lemma 3.4.6).

(v) Explicit computations show that the classes of projective spaces JPnKCH ∈ CHf ⊂
Zrbs are the coefficients of the derivative of the power series log x (Miščenko’s for-
mula), from which one deduces that they belong to the subring L. �

In particular, for H ∈ tCH,Ku the ring Hf does not depend on the base field k.

3.4.9. Remark. When k has characteristic zero, there exists an oriented cohomology
theory Ω (see [LM07]) with the property that

L „
ÝÑ Ωf “ ΩpSpec kq.

3.5. Chern numbers and the Lazard ring.

3.5.1. Definition. A sequence of integers α “ pα1, . . . , αmq with m ∈ N is called a
partition if α1 ě α2 ě ¨ ¨ ¨ ě αm ą 0. We will write |α| “ α1 ` ¨ ¨ ¨ ` αm ∈ N. To the
partition α corresponds the monomial bα “ bα1 ¨ ¨ ¨ bαm ∈ Zrbs.

3.5.2. Definition. Let X ∈ Smk and E ∈ K0pXq. Observe that PHpEq has degree zero
in the Z-graded ring HpXqrbs. For each partition α, we define the Conner–Floyd Chern
class cHα pEq ∈ H|α|pXq (or simply cαpEq) as the bα-coefficient of PHpEq, so that

PHpEq “
∑
α

cHα pEqbα ∈ HpXqrbs.
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3.5.3. Example. When α is the partition p1, . . . , 1q of length n, we have bα “ bn1 and
cαpEq “ cnpEq for any vector bundle E Ñ X in Smk.

3.5.4. Lemma. There are polynomials Qα, Rα ∈ Zrcs, indexed by the partitions α, such
that, for any vector bundle E Ñ X in Smk

cαpEq “ Qαpc1pEq, . . . q and cαp´Eq “ Rαpc1pEq, . . . q,

and every polynomial in Zrcs is a Z-linear combination of the polynomials Qα, resp. Rα.

Proof (sketch). Let α “ pα1, . . . , αmq be a partition, and let n ě m. The n-th symmetric
group acts on the ring Zrx1, . . . , xns by permuting the variables. The sum of the elements
in the orbit of xα1

1 ¨ ¨ ¨xαm
m may be written as a polynomialQα in the elementary symmetric

polynomials σ1, . . . , σm, which does not depend on the choice of n. The formula cαpEq “
Qαpc1pEq, . . . q then follows from the splitting principle.

If P ∈ Zrc1, . . . , cns, then P pσ1, . . . , σnq ∈ Zrx1, . . . , xns is a Z-linear combination of
orbits of monomials in x1, . . . , xn, hence P is a Z-linear combination of polynomials Qα.
The relation PHpEqPHp´Eq “ 1 permits to express cαp´Eq, resp. cαpEq, as a Z-linear
combination of cβpEq, resp. cβp´Eq (whose coefficients depend only on α). �

For any partition α, taking the bα-coefficient yields a group morphism

cα : L ⊂ Zrbs Ñ Z.

3.5.5. Definition. When X is a smooth projective variety we will denote by JXK ∈ L the
element corresponding to JXKCH under the isomorphism L „

ÝÑ CHf .

3.5.6. Remark. The group morphism cα is given by

cαpJXKq “ deg
`

cCH
α p´TXq

˘

∈ Z,
for every smooth projective variety X. Therefore, in view of Lemma 3.5.4, the class
JXK ∈ L determines, and is determined by, the collection of Chern numbers of X. This
yields an alternative definition of the Lazard ring: declare two smooth projective varieties
equivalent if they have the same collection of Chern numbers (indexed by tuples of integers
in N). The set of equivalence classes is a commutative monoid for the disjoint union; let
L be the associated abelian group. Then the cartesian product of varieties induces a ring
structure on L, and we have a ring isomorphism L

„
ÝÑ L mapping the class of a smooth

projective variety X to the class JXK.

3.5.7. Remark. Each of the mappings X ÞÑ χpXq and X ÞÑ χpX,OXq defines a ring
morphism LÑ Z.

3.5.8. Lemma. Let X be a smooth projective variety. Then the morphism LÑ Kf sends
JXK to JXKK .

Proof. There exists an oriented cohomology theory CK (“connectiveK-theory”, see [Cai08]
where we set CK “

À

d∈Z CKd,´d) such that CKpSpec kq “ Zrβs, together with mor-
phisms of oriented cohomology theories CK Ñ CH (such that β ÞÑ 0) and CK Ñ K
(such that β ÞÑ t). We thus have morphisms of L-algebras CHf Ð CKf Ñ Kf , such
that JXKCH Ðß JXKCK ÞÑ JXKK . The morphism CKf Ñ Kf is bijective: it is tau-
tologically surjective, and it is the restriction of the injective morphism CKpSpec kq “
Zrβsrbs Ñ KpSpec kq “ Zrt, t´1srbs. The statement follows.

Alternatively, one may prove the statement without introducing the theory CK, using
instead the Riemann–Roch theorem (see [Mer02, Proposition 6.2] for details). �
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3.5.9. Proposition. Let n ∈ Z, and X a smooth projective variety. Then JXK ∈ nL if
and only if

χpX,Λi1TX b ¨ ¨ ¨ b ΛimTXq ∈ nZ for all m ∈ N and pi1, . . . , inq ∈ Nm.

Proof. It follows from the Hattori–Stong Theorem 3.4.3 and Lemma 3.5.8 that JXK ∈ nL
if and only pK˚ pcKα p´TXqq ∈ nZ for all partitions α. By Lemma 3.5.4, this happens if and
only if

pK˚ pQpc
K
1 pTXq, . . . qq ∈ nZ

for all polynomials Q ∈ Zrcs. We conclude with the lemma below. �

3.5.10. Lemma. Let n, r, d ∈ N. There are polynomials P,R in Zrt, t´1srx1, . . . , xrs such
that for any rank r vector bundle E Ñ X with X ∈ Smk and dimX ď d, we have in
KpXq

cnpEq “ P prΛ1Es, . . . , rΛrEsq and rΛnEs “ Rpc1pEq, . . . , crpEqq.

Proof. See e.g. [Hau22, Lemma 2.2.12]. The key points are that, for vector bundles E,F
over X ∈ Smk, we have

cmpE ‘ F q “
∑

i`j“m

cipEqcjpF q and ΛmpE ‘ F q '
à

i`j“m

ΛipEq b ΛjpEq,

while, when LÑ X is a line bundle,

c1pL
_q “ t´1p1´ rLsq and Λ1pLq “ L.

In addition, by the existence of the formal group law, the datum of c1pL_q is equivalent
to that of c1pLq. �

We conclude this section by supplying some information on the structure of the ring
L. For d ∈ Nr t0u, let us define the following integer:

ωd “

#

1 if d` 1 is not a prime power,
p if d` 1 is a power of the prime p.

An elementary computation shows that

(3.5.10.a) ωd “ gcd
1ďiďtpd`1q{2u

ˆ

d` 1

i

˙

.

3.5.11. Proposition. The ring L is polynomial on generators yd ∈ L´d for d ∈ N r t0u
satisfying cpdqpydq “ ωd.

Proof. This can be deduced from purely algebraic considerations on the map L Ñ Zrbs
of (3.3.3.a); see [Ada74, II, §7]. �

Conversely, it is not difficult to see that a family `d ∈ L´d for d ∈ Nrt0u constitutes a
set of polynomial generators of the ring L if and only if cpdqp`dq “ ˘ωd for each d ∈ Nrt0u.

Explicit generators of L can be constructed using the classes of projective spaces and
Milnor hypersurfaces. This follows from (3.5.10.a), since

cpdqpJPdKq “ ´d´ 1 “ ´

ˆ

d` 1

1

˙
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and when 2 ď m ď n, setting d “ m` n´ 1,

cpdqpJHm,nKq “
ˆ

d` 1

m

˙

.

4. Epilogue

We are now in position to reformulate Theorem 2.2.5 in terms of cobordism:

4.1. Theorem. Let X be a smooth projective variety with an action of a p-group G.
Assume that one of the following conditions holds:
(i) G is cyclic.
(ii) char k “ p.
(iii) dimX ă p´ 1.
If JXK R pL, then XG ‰ ∅.

Proof. In view of Proposition 3.5.9, this follows by applying Theorem 2.2.5 to the G-
equivariant OX -modules F “ Λα1TX b ¨ ¨ ¨ b ΛαmTX . �

4.2. Definition. For n ∈ N r t0u, we denote by Ippnq the ideal of L generated by the
classes JXK, where X runs over the smooth projective varieties of dimension ď pn´1 ´ 1
having all Chern numbers divisible by p. So Ipp1q “ pL, and Ippnq ⊂ Ippn` 1q. We also
set Ipp0q “ 0 ⊂ L, and Ipp∞q “

Ť

n Ippnq.

The next statement bridges the gap between (2.2.5.i) (case r “ 1) and (2.1.2.i) (using
the inclusion Ipprq ⊂ Ipp∞q).

4.3. Theorem (Work in progress). Let G be an abelian p-group of rank r, and X a smooth
projective variety with an action of G. If JXK R Ipprq, then XG ‰ ∅.
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