Universität Regensburg

Modulkatalog

für den Bachelorstudiengang
 Informatik (B.Sc.)
 an der Universität Regensburg

gültig ab Wintersemester 2023/24

Inhaltsverzeichnis

Pflichtmodule - insgesamt 150 LP:

Modulkennung	Modulname	P/WP	SWS / Std.	LP	empfohlenes Fachsemester	Seite
INF-BSc-P01	Theoretische Grundlagen der Informatik I	Pflicht	$2 \mathrm{~V}+2$ Ü	6	1.	6
INF-BSc-P02	Programmieren I	Pflicht	$2 \mathrm{~V}+2$ Ü	6	1.	9
INF-BSc-P03	Mensch-Maschine-Interaktion	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	1.	11
INF-BSc-P04	Informatik und Gesellschaft	Pflicht	2 V	3	1.	13
INF-BSc-P05	English for Computer Science	Pflicht	2 Sprachkurs	3	1.	15
INF-BSc-P06	Mathematik 1 FIDS Grundlagen und Lineare Algebra I	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	1.	17
INF-BSc-P07	Programmieren II	Pflicht	$2 \mathrm{~V}+2$ Ü	6	2.	20
INF-BSc-P08	Algorithmen und Datenstrukturen	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	2.	22
INF-BSc-P09	Datenbanken I	Pflicht	$2 \mathrm{~V}+2$ Ü	6	2.	24
INF-BSC-P10	Technische Informatik	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	2.	27
DAT-B-PROB	Data Science 1 (Wahrscheinlichkeitstheorie)	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	2.	30
INF-BSc-P11	Software Engineering	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	3.	32
INF-BSc-P12	Betriebssysteme	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	3.	34
INF-BSc-P13	Grundlagen der IT-Sicherheit	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	3.	37
INF-BSc-P14	Mathematik 2 FIDS - Lineare Algebra II und Analysis I	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	3.	40
INF-BSc-P15	Programmierpraktikum	Pflicht	$2 P+2 P$	10	4.	43
INF-BSc-P16	Mathematik 3 FIDS - Analysis II und Numerik	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	4.	45
INF-BSc-GEN	Studium Generale	Pflicht		8	ab 4.	48
DAT-B-ML	Maschinelles Lernen	Pflicht	8	10	4.	50
INF-BSC-P17	Digitale Bildverarbeitung I	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	5.	52
INF-BSc-P18	Netze und verteilte Systeme	Pflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	5.	54

INF-BSc-P19	Vortragsseminar	Pflicht	6 S	6	5.	57
INF-BSc-P20	Bachelorarbeit	Pflicht	2 S	14	5. und 6.	60

Wahlpflichtmodule - aus dem Angebot sind insgesamt mindestens 30 LP (in der Regel fünf Module) zu wählen, hierbei müssen mindestens 12 LP (zwei Module) aus dem Fachgebiet Allgemeine Informatik stammen.

Modulkennung	Modulname	P/WP	SWS / Std.	LP	empfohlenes Fachsemester	Seite
Fachgebiet: Allgemeine Informatik						
INF-BSc-WP01	Studentisches Mentoring	Wahlpflicht	$\begin{aligned} & 1 \text { Kurs + } 2 \\ & \text { Kurs } \end{aligned}$	3	ab 3.	62
INF-BSc-WPO2	Einführung in die Kryptographie	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 3.	65
INF-BSc-WP03	Spezielle Bereiche der Allgemeinen Informatik	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 3.	68
INF-BSc-WP04	Theoretische Grundlagen der Informatik II	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	70
INF-BSc-WP05	Logik und Formale Methoden	Wahlpflicht	$\begin{aligned} & 2 \mathrm{~V}+1 \mathrm{U}+ \\ & 1 \mathrm{~L} \end{aligned}$	6	ab 4.	72
INF-BSc-WP06	Constraint-Modellierung und Programmierung	Wahl- pflicht	$\begin{aligned} & 2 \mathrm{~V}+1 \mathrm{U}+ \\ & 1 \mathrm{~L} \end{aligned}$	6	ab 4.	75
INF-BSc-WP07	Vortragsseminar	Wahlpflicht	2 S	6	ab 4.	78
INF-BSc-WP08	Datenbanken II - Architekturprinzipien und Datenstrukturen moderner Datenbanksysteme	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	81
INF-BSc-WP09	Unternehmenspraktikum	Wahlpflicht	min. 180 Std.	6	ab 5 .	84
Fachgebiet: Data Science						
DAT-B-INFER	Data Science 2 (Inferenz)	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 3.	86
DAT-B-DE	Data Engineering	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 3.	89

DAT-B-CONQUANT	Quantenmechanik und Informationsverarbeitung	Wahlpflicht	$2 \mathrm{~V}+2$ Ü	6	ab 3.	92
DAT-B-ELM-TIME	Wahlmethodenkurs Zeitreihen	Wahlpflicht	$2 \mathrm{~V}+2$ Ü	6	ab 4.	95
DAT-B-MODEL	Data Science 3 (Modellierung)	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	5.	97
Fachgebiet: Human Information Behaviour						
DAT-B-CON-NLE1	Konnektor Natural Language Engineering 1	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 3.	99
INF-BA-M03	Informationsverhalten verstehen	Wahlpflicht	$2 \mathrm{~V}+2$ Ü	6	ab 3.	101
DAT-B-CON-NLE2	Konnektor Natural Language Engineering 2	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	103
INF-BA-M06	Einführung in das Information Retrieval	Wahlpflicht	$2 \mathrm{~V}+2$ Ü	6	ab 4.	106
INF-HIB-M01	Grundlagen der symbolischen Künstlichen Intelligenz	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	5.	108
INF-HIB-M02	Recommender Systeme	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	6.	111

Fachgebiet: Medieninformatik

MEI-BA-M05	Usability Engineering	Wahl- pflicht	$2 \mathrm{~V}+2$ Ü	6	ab 3.	113
MEI-BA-M06	Multimedia Technology	Wahl- pflicht	$2 \mathrm{~V}+2$ Ü	6	ab 3.	115
MEI-BA-M07	Multimedia Engineering	Wahl- pflicht	2 V +2 ProjektS	6	ab 4.	117
MEI-BA-M08	Angewandte Medieninformatik					
I	Wahl- pflicht	2 V +2 ProjektS	6	ab 4.	119	
MEI-BA-M09	Angewandte Medieninformatik	Wahl- pflicht	2 V +2 ProjektS	6	ab 5.	121

Fachgebiet: Spezielle Anwendungsbereich der Informatik

INF-BSc-ANW	Spezielle Bereiche der Angewandten Informatik	Wahl- pflicht	$2 \mathrm{~V}+2$ Ü	6	ab 3.	123

Fachgebiet: Wirtschaftsinformatik

WI-BSc-IBIS-M01a	Digital Business I: Geschäftsmodelle und Prozesse	Wahlpflicht	$2 \mathrm{~V}+2$ Ü	6	3. bzw. 5.	126
WI-BSC-IBIS-M02a	Digital Business II: Netzwerke und Digitale Märkte	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	3. bzw. 5.	129
WI-BSc-AWI-M04	Architektur von Informationssystemen	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	4.	132
DAT-B-CONPROCESS	Process Science	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	135
WI-BSc-IBIS-M06	Explainable AI	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	138
WI-BSc-WI-M04	Methoden und Management der Softwareentwicklung	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	140
Fachgebiet: Wirtschaftswissenschaften						
DB-BSc-FI-M01	Digital Real Estate	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	143
BWL-BSc-PG-M01	Leistungserstellung	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	146
BWL-BSc-BA-M01	Applied Data Science	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	148
$\begin{aligned} & \text { BWL-BSc-WM- } \\ & \text { M02 } \end{aligned}$	Logistik	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	ab 4.	150
BWL-BSc-PG-M03	Produktionsmanagement	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	5.	152
VWL-BSc-GL-M05	Einführung in die Ökonometrie	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	5.	154
VWL-BSc-EW- M03	Zeitreihenökonometrie	Wahlpflicht	$2 \mathrm{~V}+2 \mathrm{U}$	6	6.	157
BWL-BSc-WM- M05	Quantitative Methoden des digitalen Produktionsmanagements	Wahlpflicht	$2 \mathrm{~V}+2$ Ü	6	6.	160
Fachgebiet: Rechtswissenschaften						
DIGLAW 06	Public Digital Law	Wahlpflicht	8 V	16	5. und 6 .	162

Pflichtmodule

INF-BSC-P01 - Theoretische Grundlagen der Informatik I

1. Name des Moduls:	Theoretische Grundlagen der Informatik I
	Introduction to Theoretical Computer Science I
2. Fachgebiet / Verantwortlich:	Prof. Philipp Rümmer / Lehrstuhl für Theoretische Informatik
3. Inhalte des Moduls:	Das Modul vermittelt einen Überblick der Theoretischen Informatik, sowie einen weitergehenden Einblick in ausgewählte Themen, die für das allgemeine Informatikstudium von besonderer Bedeutung sind. Dabei werden insbesondere die folgenden Bereiche abgedeckt: - Grundlegende Konzepte wie Graphen, Bäume, Verbände, verschiedene Arten der vollständigen Induktion, Hüllenbildung. - Der Begriff des Algorithmus, (Nicht-) Determinismus, partielle und totale Korrektheit, Invarianten. - Klassifikation und Beschreibung formaler Sprachen, die Chomsky-Hierarchie, endliche Automaten, Grammatiken. - Aussagen- und Prädikatenlogik, Syntax und Semantik, der Begriff des Kalküls. - (Nicht-)Berechenbarkeit von Funktionen, grundlegende Berechnungsmodelle, das Halteproblem. - Komplexität von Problemen und Algorithmen, O-Notation, die Klassen P und NP. Das Modul enthält außerdem eine Einführung zum Textverarbeitungssystem LaTeX.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls besitzen die Studierenden ein grundlegendes Verständnis der Theoretischen Informatik, sowie Kenntnisse in den erwähnten Bereichen: algebraische Grundlagen, formale Sprachen, Logik, Berechenbarkeitstheorie, Komplexitätstheorie. Studierende können die Beziehungen dieser Themenbereiche zueinander sowie zur Informatik im Ganzen erklären. Sie kennen die behandelten Grundbegriffe der Theoretischen Informatik, deren

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Theoretische Grundlagen der Informatik I	Klausur oder mündliche Prüfung	Klausur: 60-120 min mündliche Prüfung: 25-40 min	Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart bzw. die konkrete Prüfungsdauer spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

INF-BSC-PO2 - Programmieren I

1. Name des Moduls:	Programmieren I
	Programming I
2. Fachgebiet / Verantwortlich:	N. N. / Lehrstuhl für Programmierung und Software Engineering sowie N.N. / Lehrstuhl für Algorithmen und Datenstrukturen
3. Inhalte des Moduls:	Das Modul vermittelt ein Grundverständnis für Datenverarbeitung und Programmierung am Beispiel einer objektorientierten Programmiersprache. Inhalte sind u.a.: - Primitive und komplexe Datentypen - Variablen und Operatoren - Kontrollstrukturen - Datenstrukturen (Arrays und Listen) - Objektorientierung (Vererbung, Abstraktion) - Rekursion - Testen - Vermittlung grundlegender Kenntnisse zu Versionsverwaltungssystemen
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls verfügen die Studierenden über ein grundlegendes Verständnis der Programmierung mit elementaren Operatoren und Kontrollstrukturen. Sie können darauf aufbauend das Konzept der objektorientierten Programmierung (Vererbung, Polymorphie, Abstraktion) mit einer geeigneten Programmiersprache sowie gängiger Datenstrukturen wie Arrays und Listen erklären. Die Studierenden verfügen generell über einen guten Programmierstil und sind in der Lage, Programmierprobleme mit einer geeigneten Programmiersprache eigenständig zu lösen. Software-Entwicklung kann nur durch praktische Anwendung und Programmierung erlernt und verstanden werden. Studierende weisen deshalb nach Abschluss des Moduls die Fähigkeit nach, dass sie die erlernten Konzepte und Programmierprobleme anwenden und praktisch umsetzen können.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine

b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	1. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich / Thema	SWS /Std.	LP	Studienleistungen
1	P	Vorlesung	Programmieren I	2	4	
2	P	Übung	Programmieren I	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/ Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Programmieren I	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Das Dokument befindet sich aktuell im dreimonatigen Genehmigungsprozess des Bayerischen Staatsministeriums für Wissenschaft und Kunst, der im August 2023 abgeschlossen sein wird.

INF-BSC-P03 - Mensch-Maschine-Interaktion

1. Name des Moduls:	Mensch-Maschine-Interaktion
	Human-Computer-Interaction
2. Fachgebiet / Verantwortlich:	N. N. / Lehrstuhl für Mensch-Maschine-Interaktion
3. Inhalte des Moduls:	In diesem Modul werden Grundlagen der Gestaltung interaktiver Systeme vermittelt. Dazu gehören physiologische und psychologische Grundlagen, relevante Modelle in der HCl sowie Normen und Richtlinien zur Gestaltung von Benutzerschnittstellen. Es wird in den aktuellen Forschungsstand auf diesem Gebiet eingeführt.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls kennen die Studierenden die zentralen ergonomischen Randbedingungen der Gestaltung benutzerfreundlicher Anwendungen und haben Einblick in aktuelle Probleme der Forschung im Bereich HCl . Sie sind in der Lage, vorgegebene Beispielsysteme anhand von Standards und Heuristiken einzuordnen, kritische Eigenschaften zu benennen und Verbesserungspotentiale abzuleiten.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. Informatik: 1. Fachsemester B.Sc. Data Science: ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std . Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Mensch-Maschine- Interaktion	2	4	
2	P	Übung	Mensch-Maschine- Interaktion	2	2	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Be reich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Mensch-Maschine- Interaktion	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der Übungsaufgaben werden in der Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

INF-BSC-P04 - Informatik und Gesellschaft

1. Name des Moduls:	Informatik und Gesellschaft
	Computer Science and Society
2. Fachgebiet / Verantwortlich:	Prof. Juliane Krämer/ Lehrstuhl für Datensicherheit und Kryptographie
3. Inhalte des Moduls:	Eingeladene Experten und Expertinnen halten Vorträge, in denen das Zusammenspiel von Informatik und Gesellschaft bzgl. unterschiedlicher Aspekte beleuchtet wird.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls sind die Studierenden in der Lage, gesellschaftliche Auswirkungen der Informatik bzw. des Einsatzes informatischer Methoden und Technologien zu analysieren und zu reflektieren. Sie können diese Erkenntnisse auf ihr eigenes Handeln als Informatikerinnen und Informatiker übertragen.
5. Teilnahmevoraussetzungen:	empfohlene Kenntnisse:
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	1. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 90 Std. davon: 1. Präsenzzeit: 30 Std. 2. Selbststudium: 60 Std. Leistungspunkte: 3

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/ Thema	SWS / Std.	LP	Studienleistungen
1	P	Ring- Vorlesung	Informatik und Gesellschaft	2	3	Übungsaufgaben

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
-	-	-	-	-

14. Bemerkungen:

Das Modul ist unbenotet.

INF-BSc-P05 - English for Computer Science

1. Name des Moduls:	English for Computer Science
	English for Computer Science
2. Fachgebiet / Verantwortlich:	Zentrum für Sprache und Kommunikation (ZSK), Studienbegleitende Fremdsprachenausbildung (SFA)
3. Inhalte des Moduls:	Mit besonderem Fokus auf die Wissenschaftssprache der Informatik werden alle sprachlichen Teilkompetenzen auf dem Sprachniveau B2 bzw. C1 GER trainiert. Im Bereich der Rezeption beschäftigen sich die Studierenden mit fachorientierten schriftlichen und mündlichen Texten, trainieren dabei verschiedene Verstehensstrategien und setzen sich mit den Besonderheiten unterschiedlicher Fach relevanter Textsorten auseinander. Im Bereich der Produktion verfassen die Studierenden eigene fachbezogene und wissenschaftsorientierte Texte, erstellen Präsentationen zu fachbezogenen bzw. studienrelevanten Themen und üben verschiedene Kontexte der wissenschaftlichen Kommunikation. Einen weiteren Schwerpunkt bildet der Auf- und Ausbau des fachbezogenen Wortschatzes und der fachrelevanten wissenschaftssprachlichen Strukturen.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach erfolgreichen Abschluss dieses Moduls kennen die Studierenden Charakteristika der Wissenschaftssprache Englisch, haben ihre rezeptiven Sprachkompetenzen in Bezug auf fachliche bzw. wissenschaftliche Texte erweitert und ihre produktiven Sprachkompetenzen in Bezug auf verschiedene Kontexte der wissenschaftlichen Kommunikation ausgebaut. Sie haben verschiedene sprachliche Kompetenzen erworben, die für die akademische Praxis und für die fachbezogene Interaktion von Nutzen sind.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Englischkenntnisse auf dem Niveau B1
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.SC. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/	1 Semester

Vorgesehene Dauer des Moduls:	
9. Empfohlenes Fachsemester:	1. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 90 Std. davon: 1. Präsenzzeit: 30 Std. 2. Selbststudium: 60 Std. Leistungspunkte: 3

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Sprach- kurs	English for Computer Science	2	3	schriftlicher und mündlicher Leistungsnachweis/-kontrolle $(90$ min $)$

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
-	-	-	-	-

14. Bemerkungen:

Das Modul ist unbenotet.

Vor der Teilnahme an der Lehrveranstaltung English for Computer Science müssen alle Studierenden an einem Einstufungstest teilnehmen, um ihr Sprachniveau zu ermitteln. Bezüglich der Einstufung in den Sprachkursen gelten die Bedingungen des Zentrums für Sprache und Kommunikation (ZSK). Der Einstufungstest wird in der Regel jährlich im Wintersemester in der Woche vor Vorlesungsbeginn angeboten. Dem Ergebnis entsprechend werden die Studierenden einem Kurs zugeteilt. Üblicherweise werden die Kurse für die Sprachniveaus B2 und C1 angeboten. Informationen zur Einstufung werden rechtzeitig bekanntgegeben.

INF-BSc-P06 - Mathematik 1 FIDS - Grundlagen und Lineare Algebra I

1. Name des Moduls:	Mathematik 1 FIDS - Grundlagen und Lineare Algebra I
	Mathematics 1 FIDS - Foundations and Linear Algebra I
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Mathematik
3. Inhalte des Moduls:	Das Modul vermittelt eine anwendungsorientierte und auf die Bachelorstudiengänge Informatik und Data Science zugeschnittene Einführung in die Mathematik; es zeigt immer wieder, wie mathematisches Denken in Informatik und Data Science zum Tragen kommt, und versetzt so Studierende in die Lage, sich Mathematik erschließen zu können. Das Modul besteht aus zwei Teilen: Grundlagen der Mathematik: - Formulierung von mathematischen Definitionen und Sätzen - Beweistechniken, z.B. vollständige Induktion - Grundbegriffe der Logik und Mengenlehre - Reelle und komplexe Zahlen - Grundlegende Konzepte wie Relationen, Funktionen (injektiv, surjektiv, bijektiv), Ordnungen, Graphen, Bäume, Algebren Lineare Algebra I: - Lineare Gleichungssysteme, Gaußsches Eliminationsverfahren - Vektorräume, Linearkombinationen, Basen, Unterräume - Lineare Abbildungen und ihre Darstellung als Matrizen
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls verfügen die Studierenden über ein grundlegendes Verständnis der tragenden Rolle der Mathematik in Informatik und Data Science und sind vertraut mit den grundlegenden Prinzipien mathematischen Denkens. Studierende sind in der Lage, einfache mathematische Beweise exakt aufzuschreiben, unter Anwendung von im Kurs behandelten Beweistechniken und mathematischen Konzepte. Darüber hinaus verfügen Studierende nach Absolvieren des Moduls über ein grundlegendes Verständnis der Konzepte und Methoden in der linearen Algebra. Sie verstehen den geometrischen Hintergrund der linearen Algebra und sind in der Lage, lineare Algebra zur

	Modellierung und rechnerischen Untersuchung von einfachen Systemen zu verwenden.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	1. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP /W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Grundlagen der Mathematik (FIDS)	1	2	
2	P	Übung	Grundlagen der Mathematik (FIDS)	1	1	Übungsaufgaben*
3	P	Vorlesung	Lineare Algebra I (FIDS)	1	2	
4	P	Übung	Lineare Algebra I (FIDS)	1	1	Übungsaufgaben*
Bemerkung:						

Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Grundlagen der Mathematik (FIDS) (zu Nr. 12.1-2)	Klausur	$60-120$ min	Mitte der Vorlesungszeit	50%
Lineare Algebra I (FIDS) (zu Nr. 12.3-4)	Klausur	$60-120$ min	Anfang der vorlesungsfreien Zeit	50%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 bis 4 im selben Semester zu absolvieren.
*Es wird dringend empfohlen, die Studienleistung vor der entsprechenden Modul(teil)prüfung abzulegen. Es muss nur eine der beiden Studienleistungen Nr. 12.2 und Nr. 12.4 zum Abschluss des Moduls absolviert werden. Für erfolgreiches Lösen der Übungsaufgaben (Studienleistungen Nr. 12.2 oder Nr. 12.4), die nicht als Studienleistung eingebracht werden, werden in der entsprechenden Klausur (Modulprüfung) bis zu 10 \% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die Prüfungsdauer spätestens sechs Wochen vor dem Prüfungstermin bekannt.

Mit den zwei Teilprüfungsleistungen wird sichergestellt, dass die Studierenden sowohl in dem Bereich "Grundlagen der Mathematik", als auch in dem Bereich "Lineare Algebra I" entsprechende Kompetenzen gleichermaßen erlernt haben.

INF-BSc-P07 - Programmieren II

1. Name des Moduls:	Programmieren II
	Programming II
2. Fachgebiet / Verantwortlich:	N. N. / Lehrstuhl für Programmierung und Software Engineering sowie N.N. / Lehrstuhl für Algorithmen und Datenstrukturen
3. Inhalte des Moduls:	Das Modul vermittelt weiterführende Konzepte und Methoden der Programmierung am Beispiel aktueller Programmiersprachen.
	Inhalte sind u.a.: - Weiterführende dynamische Datenstrukturen
	- Generics - Sprachunabhängige Speichermodelle und Zeigerarithmetik
- Konzepte zur manuellen und automatischen	
Speicherverwaltung	
K. Venzepte zur robusten Fehlerbehandlung mit	
Ausnahmen	

	B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. Informatik: 2. Fachsemester B.Sc. Data Science: ab 2. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std.
Leistungspunkte: 6	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP/ W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Programmieren II	2	4	
2	P	Übung	Programmieren II	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Programmieren II	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

INF-BSC-P08 - Algorithmen und Datenstrukturen

1. Name des Moduls:	Algorithmen und Datenstrukturen
	Algorithms and Data Structures
2. Fachgebiet / Verantwortlich:	N.N. / Lehrstuhl für Algorithmen und Datenstrukturen
3. Inhalte des Moduls:	Das Modul startet mit den Grundlagen der Analyse von Effizienz bzw. Komplexität. Es werden grundlegende Begriffe, Komplexitätsmaße, die Landau-Symbole sowie verschiedene Maschinenmodelle eingeführt. Danach studiert das Modul grundlegende Datenstrukturen, allgemeine Konzepte der Algorithmenkonstruktion und wichtige algorithmische Probleme, wie u.a. Datenstrukturen und Verarbeitung von Sequenzen, Hashing, Sortieralgorithmen, Warte- schlangen, Suchalgorithmen und Suchbäume, Graphalgorithmen. Im Stoffspektrum des Moduls sind optional Datenkompressionverfahren (Huffman, Lempel-Ziv) und grundlegende Algorithmen für das Problem des Pattern Matchings vorgesehen.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls beherrschen die Studierenden die oben genannten grundlegenden Algorithmen und Datenstrukturen. Sie sind in der Lage, diese eigenständig in ihrer Komplexität zu analysieren und die entsprechenden Analysekonzepte auf verwandte algorithmische Probleme anzuwenden. Ferner sind sie in der Lage, die behandelten Algorithmen und Datenstrukturen einzusetzen, sie ggf. zu modifizieren und verschiedene Lösungen in ihrer Güte zu vergleichen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundkenntnisse in Programmierung und einer objektorientierten Programmiersprache (siehe INF-BScPO2 oder DAT-B-PROG) Grundkenntnisse der theoretischen Grundlagen der Informatik (siehe INF-BSc-P01)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich

8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	2. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/WP /W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Algorithmen und Datenstrukturen	2	4	
2	P	Übung	Algorithmen und Datenstrukturen	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Algorithmen und Datenstruktur	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%
14. Bemerkungen: Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.				

INF-BSc-P09 - Datenbanken I

1. Name des Moduls:	Datenbanken I
	Databases I
2. Fachgebiet / Verantwortlich:	Prof. Meike Klettke / Lehrstuhl für Data Engineering
3. Inhalte des Moduls:	In diesem Modul werden die Grundlagen von Datenbanktechnologien vorgestellt, mehrere Datenmodelle sowie deren Implementierungen in Datenbankmanagementsystemen eingeführt, die theoretische Fundierung des relationalen Datenmodells eingeführt und verschiedene DatenbankAnfragesprachen behandelt. Studierende erwerben Wissen zu folgenden Themen: - allgemeine Anforderungen an die Datenhaltung und an Datenbankmanagementsysteme (DBMS), - Entwurf von Datenbanken mit konzeptionellen Datenmodellen, - Übersetzung in relationale Datenmodelle, - Normalisierung relationaler Datenbanken, - Verwendung von Datenbanken, - Einsatz einer Data Manipulation Language (DML), - Anfragen an relationale Datenbanken mittels SQL, - Verwendung von Sichten, - Vergabe von Zugriffsrechten auf relationalen Datenbanken und deren Einsatz für den Datenschutz. Im Rahmen des Moduls werden zwei weitere Datenmodelle eingeführt: - dokumentorientiertes NoSQL Datenmodell auf Basis von JSON sowie dessen Anfragesprache, - Graphdatenbanken sowie die zugehörige Anfragesprache und Algorithmen auf Graphdatenbanken. Weiterhin werden aktuelle Themen und Ergebnisse der Datenbankforschung vorgestellt.

4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls kennen die Studierenden grundlegende Datenbankkonzepte sowie deren theoretische Fundierung. Sie können Datenbanken erstellen, verwenden und warten und sind in der Lage, die Wahl eines geeigneten Datenmodells und DBMS zu treffen, Datenbankschemata selbst zu entwickeln, zu optimieren sowie zu verwenden. Darüber hinaus können sie sich durch das Wissen über die theoretischen Grundlagen von Datenbanken sowie die Fähigkeit zum Verwenden mehrerer Datenbankmanagementsysteme leicht in neue Technologien zur Datenspeicherung einarbeiten.
5. Teilnahmevoraussetzungen:	a) empfohlene Kenntnisse: b) verpflichtende Nachweise: 6. Verwendbarkeit des Moduls: objektorientierten Programmiersprache (siehe INF-BSc- P02 oder DAT-B-PROG)
7. Angebotsturnus des Moduls:	keine B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Pflichtmodul)
8. Das Modul kann absolviert werden in/	Sommersemester, jährlich
Vorgesehene Dauer des Moduls:	Semester
9. Empfohlenes Fachsemester:	2. Fachsemester
10. Arbeitsaufwand des Moduls	
(Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std.
Leistungspunkte: 6	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Vorlesung	Datenbanken I	2	4	
2	P	Übung	Datenbanken I	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Datenbanken I	Klausur oder mündliche Prüfung	Klausur: 90 min bzw. mündliche Prüfung: 20-25 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

INF-BSc-P10 - Technische Informatik

1. Name des Moduls:	Technische Informatik
	Computer Architecture

	Methoden zur Kommunikation mit anderen Einheiten beschreiben und im Entwurf eigener Systeme anwenden. Assemblerprogramme für im Kurs behandelte Architekturen schreiben, sowie das Verhalten von einfachen Assemblerprogrammen erklären und analysieren.
a) empfohlene Kenntnisse:	Grundkenntnisse in Programmierung und einer objektorientierten Programmiersprache (siehe INF-BSc- P02 oder DAT-B-PROG) Grundkenntnisse der theoretischen Grundlagen der Informatik (siehe INF-BSc-P01)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr.	P/WP/ W	Lehrform	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Vorlesung	Technische Informatik	2	4	

2	P	Übung	Technische Informatik		2	2		
Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.								
13. Modulprüfung:								
	enz	ma/Bereich	Art der Prüfung	Dauer		Zeitpunkt		Anteil an Modulnote
	he I	matik	Klausur oder mündliche Prüfung	Klausur: 60-120 min bzw. mündliche Prüfung: 25-40 min		gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit		100\%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart bzw. die konkrete Prüfungsdauer spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

DAT-B-PROB - Data Science 1 (Wahrscheinlichkeitstheorie)

1. Name des Moduls:	Data Science 1 (Wahrscheinlichkeitstheorie)
	Data Science 1 (Probability)
2. Fachgebiet / Verantwortlich:	Prof. Thomas Jaki / Lehrstuhl für Computational Statistics Prof. Merle Behr / Lehrstuhl für Maschinelles Lernen
3. Inhalte des Moduls:	Dieses Modul dient der Einführung in die Wahrscheinlichkeitstheorie, die auf die Bedürfnisse von Data Science zugeschnitten ist. Es kombiniert die mathematischen Grundlagen der Wahrscheinlichkeit mit Zufallssimulationen. Es werden die Grundlagen der Wahrscheinlichkeitstheorie einschließlich univariater, multivariater und bedingter Verteilungen, das Gesetz der großen Zahlen, den zentralen Grenzwertsatz und einige stochastische Prozesse behandelt. Das Modul zeigt auch auf, wo die Theorie auf Data Science Anwendungen wie Bayes'sche Schätzung, Markov Chain Monte Carlo, multiple Regression und die Geometrie der multivariaten Normalverteilung trifft.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls verfügen die Studierenden über einen soliden theoretischen Hintergrund für die moderne Datenanalyse. Sie haben ein Verständnis für Zufallsphänomene und Kenntnisse in der Wahrscheinlichkeitstheorie und können analytische Berechnungen durchführen sowie Zufallssimulationen erstellen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlegende Programmierkenntnisse (siehe DAT-BPROG oder INF-BSc-PO2) Grundlagen der Mathematik und Lineare Algebra I (siehe INF-BSc-P06)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester

9. Empfohlenes Fachsemester:	2. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

W	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Wahrscheinlichkeitstheorie	2	3	
2	P	Übung	Wahrscheinlichkeitstheorie	2	3	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Wahrscheinlichkeitstheor ie	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.
Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der freiwilligen Übungsaufgaben werden in der Modulprüfung (Klausur) bis zu 10 \% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

INF-BSC-P11 - Software Engineering

| 1. Name des Moduls: | Software Engineering |
| :--- | :--- |$|$| Software Engineering |
| :--- | :--- |

b) verpflichtende Nachweise:				keine				
6. Verwendbarkeit des Moduls:				B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Pflichtmodul)				
7. Angebotsturnus des Moduls:				Wintersemester, jährlich				
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:				1 Semester				
9. Empfohlenes Fachsemester:				B.Sc. Informatik: 3. Fachsemester B.Sc. Data Science: ab 3. Fachsemester				
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:				Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6				
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.								
12. Modulbestandteile:								
Nr.	P/WP/ W	Lehrform	Themenbereich	Thema	$\begin{gathered} \text { SWS / } \\ \text { Std. } \end{gathered}$	LP	Studienle	ungen
1	P	Vorlesung	Software Engi	ering	2	4		
2	P	Übung	Software Engi	ering	2	2		
Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.								
13. Modulprüfung:								
	mpetenz/Th	ma/Bereich	Art der Prüfung					Anteil an Modulnote
Software Engineering			Klausur	90 min		gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit		100\%
14. Bemerkungen: Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.								

INF-BSc-P12 - Betriebssysteme

1. Name des Moduls:	Betriebssysteme
	Operating Systems

					kennen Technik Archite können nebenla zerlegen entwick verteilt	ie St n, Pr uren die S fig effiz n un Syst	den grundlegende Algorithmen, Modelle eilte Systeme den ein Problem in are Lösungsbestandteil teilte Algorithmen rrektheit und Effizienz rteilen.
5. Teilnahmevoraussetzungen:							
a) empfohlene Kenntnisse:				Grundkenntnisse in Programmierung und einer objektorientierten Programmiersprache (siehe INF-BScP02 oder DAT-B-PROG) Grundkenntnisse der theoretischen Grundlagen der Informatik (siehe INF-BSc-P01)			
b) verpflichtende Nachweise:				keine			
6. Verwendbarkeit des Moduls:				B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Pflichtmodul)			
7. Angebotsturnus des Moduls:				Wintersemester, jährlich			
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:				1 Semester			
9. Empfohlenes Fachsemester:				B.SC. Informatik: 3. Fachsemester B.Sc. Data Science: ab 3. Fachsemester			
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:				Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6			
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.							
12. Modulbestandteile:							
Nr .	P/ WP / W	Lehrform	Themenbereich/ Th	hema	$\begin{gathered} \text { SWS / } \\ \text { Std. } \end{gathered}$	LP	Studienleistungen

1	P	Vorlesung	Betriebssysteme	2	4	
2	P	Übung	Betriebssysteme	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema /Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Betriebssysteme	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

INF-BSC-P13 - Grundlagen der IT-Sicherheit

1. Name des Moduls:	Grundlagen der IT-Sicherheit
	Foundations of IT Security
2. Fachgebiet / Verantwortlich:	Prof. Juliane Krämer / Lehrstuhl für Datensicherheit und Kryptographie
3. Inhalte des Moduls:	In diesem Modul werden die Grundlagen für das Verständnis von Sicherheitsaspekten in IT-Systemen gelegt. Schwerpunkte der Wissensvermittlung bilden ausgewählte kryptographische Verfahren als Grundbausteine vertrauenswürdiger Systeme sowie verbreitete Sicherheitsprotokolle. Inhalte: - Einführung (Sicherheitsziele, Terminologie, grundlegende Prinzipien) - symmetrische Kryptographie - kryptographische Hashfunktionen - asymmetrische Kryptographie - Public-Key-Infrastrukturen - Identifikation/ Authentifizierung - Passwortsicherheit / Rainbowtables - SSLTLL / Web-Sicherheit - IPSec - Angreifbarkeit von IT-Systemen - Datenschutz/ Privacy /Anonymität Diese Veranstaltung bildet die Grundlage für das Verständnis anderer Veranstaltungen zur Kryptographie und IT-Sicherheit und dient dem Einstieg in die Thematik.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach erfolgreichem Abschluss des Moduls können die Studierenden grundlegende Begriffe aus dem Bereich der IT-Sicherheit wiedergeben und erklären. Sie sind in der Lage, die Unterschiede zwischen symmetrischer und asymmetrischer Kryptographie zu erklären und wichtige Algorithmen der beiden Arten aufzuzählen und zu beschreiben. Die Studierenden können verschiedene für IT-Sicherheit verwendete Protokolle benennen und skizzieren sowie Nutzungsszenarien beschreiben. Sie können erklären, mit welchem Ziel diese Protokolle ihre kryptographischen Komponenten verwenden. Die Studierenden kennen ausgewählte Angriffsvektoren gegen IT-Systeme und können diese sowie

	Gegenmaßnahmen beschreiben. Sie können grundlegende Begriffe aus dem Bereich des Datenschutzes wiedergeben und erklären.
5. Teilnahmevoraussetzungen:	Grundlagen der linearen Algebra und Analysis (siehe INF- BSc-P06 und INF-BSc-P14)
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Pflichtmodul)
6. Verwendbarkeit des Moduls:	Wintersemester, jährlich
7. Angebotsturnus des Moduls:	1 Semester
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	B.Sc. Informatik: 3. Fachsemester B.Sc. Data Science: ab 3. Fachsemester
9. Empfohlenes Fachsemester:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Grundlagen der IT- Sicherheit	2	4	
2	P	Übung	Grundlagen der IT- Sicherheit	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Bereic h	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Grundlagen der IT- Sicherheit	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

INF-BSC-P14 - Mathematik 2 FIDS - Lineare Algebra II und Analysis I

1. Name des Moduls:	Mathematik 2 FIDS - Lineare Algebra II und Analysis I
	Mathematics 2 FIDS - Linear Algebra II and Calculus I
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Mathematik
3. Inhalte des Moduls:	Das Modul vermittelt eine anwendungsorientierte und auf die Bachelorstudiengänge Informatik und Data Science zugeschnittene Einführung in die Mathematik. Es besteht aus zwei Teilen: Lineare Algebra II: - Grundbegriffe von Gruppen, Ringen, Körpern, uni- und multivariaten Polynomen - Determinanten, Eigenwerte, Eigenräume - Euklidische und unitäre Vektorräume, Hauptachsentransformation Analysis I: - Konvergenz von Folgen und Reihen - Stetigkeit und Differenzierbarkeit, Funktionen in einer Variablen - Taylorapproximation - Integralrechnung in einer Variablen - Diskrete Fouriertransformation
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls verfügen Studierende über ein grundlegendes Verständnis der behandelten Konzepte in der linearen Algebra. Sie kennen den axiomatischen und algebraischen Hintergrund der eingeführten Objekte, deren Bedeutung für Informatik und Data Science und können Methoden der linearen Algebra rechnerisch einsetzen. Darüber hinaus kennen Studierende nach Absolvieren des Moduls die grundlegenden Definitionen und Sätze der Analysis in einer Variablen, sowie deren Bedeutung in Informatik und Data Science. Die Studierenden sind in der Lage, die Methoden der Analysis auf einfache Problemstellungen anzuwenden.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlagen der Mathematik und Lineare Algebra I (siehe INF-BSc-P06)
b) verpflichtende Nachweise:	keine

6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP /W	Lehrform	Themenbereich/ Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Lineare Algebra II (FIDS)	1	2	
2	P	Übung	Lineare Algebra II (FIDS)	1	1	Übungsaufgaben*
3	P	Vorlesung	Analysis I (FIDS)	1	2	
4	P	Übung	Analysis I (FIDS)	1	1	Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Be reich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Lineare Algebra II (FIDS) (zu Nr. 12.1-2)	Klausur	$60-120$ min	Mitte der Vorlesungszeit	50%

Analysis I (FIDS) (zu Nr. 12.3-4)	Klausur	$60-120$ min	Anfang der vorlesungsfreien Zeit	50%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Es wird dringend empfohlen, die Studienleistung vor der entsprechenden Modul(teil)prüfung abzulegen. Es muss nur eine der beiden Studienleistungen Nr. 12.2 und Nr. 12.4 zum Abschluss des Moduls absolviert werden. Für erfolgreiches Lösen der Übungsaufgaben (Studienleistungen Nr. 12.2 oder Nr. 12.4), die nicht als Studienleistung eingebracht werden, werden in der entsprechenden Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die Prüfungsdauer spätestens sechs Wochen vor dem Prüfungstermin bekannt.

Mit den zwei Teilprüfungsleistungen wird sichergestellt, dass die Studierenden sowohl in dem Bereich "Lineare Algebra II", als auch in dem Bereich "Analysis I" entsprechende Kompetenzen gleichermaßen erlernt haben.

INF-BSc-P15 - Programmierpraktikum

1. Name des Moduls:	Programmierpraktikum
	Software Project
2. Fachgebiet / Verantwortlich:	N.N. / Lehrstuhl für Software Engineering
3. Inhalte des Moduls:	Im Rahmen des Softwareprojekts erfolgt die Entwicklung einer komplexen Softwarekomponente im Team. Hierzu erhält eine Gruppe von Studierenden eine Aufgabe aus dem Forschungsgebiet oder einem Projektkontext. In einem begleitenden Softskill-Kurs lernen die Studierenden Theorie und Praxis zu Projekt- und Teamarbeit.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundkenntnisse und Kompetenzen in Programmierung und einer objektorientierten Programmiersprache (siehe INF-BSC-P02 und INF-BSC-P07) Grundkenntnisse von Algorithmen und Datenstrukturen (siehe INF-BSc-M06) Grundkenntnisse des Software Engineering (siehe INF-BSc-M09)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 300 Std. davon: 1. Präsenzzeit: 60 Std . 2. Selbststudium: 220 Std. 3. Prüfung (inkl. Vorbereitung): 20 Std . Leistungspunkte: 10

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Praktikum	Programmierpraktikum	2	8	
2	P	Seminar	Projekt- und Teamarbeit	2	2	regelmäßige Teilnahme

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Ber eich	Art der Prüfung	Dauer/Umfang	Zeitpunkt	Anteil an Modulnote
Programmierpraktikum	Projektarbeit	Zeitraum der Bearbeitung: 1 Semester	Abgabe: zum Semesterende	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Jedes Projektteam erarbeitet eine gemeinsame Projektdokumentation, die auch nachvollziehbar ausweist, welches Teammitglied welche Beiträge konkret geleistet hat. Die Benotung einzelner Studierender kann von der gefundenen Teamnote abweichen.

INF-BSc-P16 - Mathematik 3 FIDS - Analysis II und Numerik

1. Name des Moduls:	Mathematik 3 FIDS - Analysis II und Numerik
	Mathematics 3 FIDS - Calculus II and Numerical Analysis
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Mathematik
3. Inhalte des Moduls:	Das Modul vermittelt eine anwendungsorientierte und auf die Bachelorstudiengänge Informatik und Data Science zugeschnittene Einführung in die Mathematik. Es besteht aus zwei Teilen: Analysis II: - Stetigkeit und Differenzierbarkeit, Funktionen in mehreren Variablen - Maxima und Minima von Funktionen - Grundlegende topologische Begriffe - Grundlagen der gewöhnlichen Differentialgleichungen Numerik: - Repräsentation von Zahlen in Fließkomma- und Fixpunktarithmetik - Rundungsfehler und Stabilität von Algorithmen, Kondition eines Problems - Lösung von Gleichungssystemen mittels Iterationsverfahren - Numerische Optimierung - Numerische Quadratur
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls verfügen Studierende über ein grundlegendes Verständnis der Definitionen und Sätze der Analysis in mehreren Variablen. Sie können Methoden der Analysis für die Modellierung und Analyse von Systemen in Informatik und Data Science anwenden. Darüber hinaus besitzen Studierende nach Absolvieren des Moduls ein grundlegendes Verständnis der Fragestellungen und Methoden der numerischen Mathematik. Sie kennen die grundlegenden Algorithmen zur numerischen Behandlung der oben genannten Aufgabenfelder, und können deren Effizienz und Verlässlichkeit diskutieren.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlagen der Mathematik und Lineare Algebra I (siehe INF-BSc-P06) Lineare Algebra II und Analysis I (siehe INF-BSc-P14)

b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr	P / WP / W	Lehrform	Themenbereich/ Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Analysis II (FIDS)	1	2	
2	P	Übung	Analysis II (FIDS)	1	1	Übungsaufgaben*
3	P	Vorlesung	Numerik (FIDS)	1	2	
4	P	Übung	Numerik (FIDS)	1	1	Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Bere ich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Analysis II (FIDS) (zu Nr. 12.1-2)	Klausur	$60-120$ min	Mitte der Vorlesungszeit	50%

Numerik (FIDS) (zu Nr. 12.3-4)	Klausur	$60-120 \mathrm{~min}$	Anfang der vorlesungsfreien Zeit	50%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 bis 4 im selben Semester zu absolvieren.
*Es wird dringend empfohlen, die Studienleistung vor der entsprechenden Modul(teil)prüfung abzulegen. Es muss nur eine der beiden Studienleistungen Nr. 12.2 und Nr. 12.4 zum Abschluss des Moduls absolviert werden. Für erfolgreiches Lösen der Übungsaufgaben (Studienleistungen Nr. 12.2 oder Nr. 12.4), die nicht als Studienleistung eingebracht werden, werden in der entsprechenden Klausur (Modulprüfung) bis zu 10 \% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die Prüfungsdauer spätestens sechs Wochen vor dem Prüfungstermin bekannt.

Mit den zwei Teilprüfungsleistungen wird sichergestellt, dass die Studierenden sowohl im Bereich "Analysis II" als auch im Bereich "Numerik" entsprechende Kompetenzen gleichermaßen erlernt haben.

INF-BSC-GEN

1. Name des Moduls:	Studium Generale
	Elective Studies
2. Fachgebiet / Verantwortlich:	Studiendekanin oder Studiendekan der Fakultät für Informatik und Data Science
3. Inhalte des Moduls:	Das Modul bietet den Studierenden Gelegenheit, je nach eigener Präferenz ihr wissenschaftliches Profil auszuweiten. Es bietet die Möglichkeit zur wissenschaftlichen Horizonterweiterung durch ein interdisziplinäres Lehrangebot der Fakultäten und Einrichtungen der Universität Regensburg
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls haben die Studierenden ihren wissenschaftlichen Horizont erweitert und verfügen über Kenntnisse und Kompetenzen aus anderen Wissenschaftsfeldern.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Keine
b) verpflichtende Nachweise:	Keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	jedes Semester
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	2 Semestern
9. Empfohlenes Fachsemester:	ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 240 Gemäß den Anforderungen der jeweiligen Lehrveranstaltungen Leistungspunkte: (mindestens) 8

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/ Thema	SWS / Std.	LP	Studienleistungen

1	WP	V/S/Ü	Studium Generale	Gemäß den Anforderungen der jeweiligen	8	Gemäß den Anforderungen der jeweiligen Lehrveranstaltungen

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Gemäß den Anforderungen der jeweiligen Lehrveranstaltungen	Gemäß den Anforderungen der jeweiligen Lehrveranstaltung en	Gemäß den Anforderungen der jeweiligen Lehrveranstaltungen	Gemäß den Anforderungen der jeweiligen Lehrveranstaltu ngen	-

14. Bemerkungen:

Das Modul ist unbenotet.

Es sind von den Studierenden aus dem von der Fakultät für Informatik und Data Science freigegebenen Lehrangebot der Fakultäten, der Universitätsbibliothek und des Zentrums für Sprache und Kommunikation der Universität Regensburg Module oder Lehrveranstaltungen im Umfang von insgesamt mindestens 8 LP frei wählbar zu belegen. Kurse des Rechenzentrums können auf Antrag eingebracht werden; die Entscheidung trifft der Prüfungsausschuss.

Jeweils zu absolvierende Studien- bzw. Prüfungsleistungen richten sich nach den Anforderungen der jeweils belegten Lehrveranstaltungen und können dem fachlich einschlägigen Modulkatalog und/oder dem kommentierten Vorlesungsverzeichnis entnommen werden.

DAT-B-ML - Maschinelles Lernen

1. Name des Moduls:	Maschinelles Lernen
	Machine Learning
2. Fachgebiet / Verantwortlich:	Prof. Merle Behr / Lehrstuhl für Maschinelles Lernen
3. Inhalte des Moduls:	Dieses Modul dient der Einführung in die allgemeinen Konzepte des überwachten Lernens für Klassifizierungsund Regressionsprobleme. Es werden verschiedene Ansätze für beide Aufgaben vorgestellt, beginnend mit einfachen Ansätzen, wie lineare Regression und Entscheidungsbäume, über komplexere Ansätze, wie Kernel-Methoden und Baum-Ensembles, bis hin zu einer Einführung in Deep Learning. Darüber hinaus werden Ansätze des unüberwachten Lernens erörtert, wie die Hauptkomponentenanalyse, Clustering-Ansätze und Methoden der Matrixfaktorisierung. Ein wichtiger Schwerpunkt liegt auf der Modellbewertung und der Modellauswahl.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls kennen die Studierenden ein breites Portfolio von Methoden des maschinellen Lernens und können deren Grenzen und Vorteile erläutern. Sie sind in der Lage zu beurteilen, ob eine bestimmte Methode für ein bestimmtes Datenproblem geeignet ist und wie sie die Qualität eines erlernten Modells bewerten können. Die Studierenden sind nach Abschluss des Moduls nicht nur in der Lage, diese Methoden erfolgreich anzuwenden, sondern auch deren theoretische Grundlagen zu verstehen und diese Methoden mathematisch zu analysieren.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlegende Programmierkenntnisse (siehe DAT-B-PROG oder INF-BSc-PO2) Grundlegende Kenntnisse in Wahrscheinlichkeitstheorie (siehe DAT-B-PROB) Grundlegende Kenntnisse in Linearer Algebra und Analysis (siehe INF-BSc-P06 und INF-BSC-P14)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Pflichtmodul)

7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 300 Std. davon: 1. Präsenzzeit: 120 Std. 2. Selbststudium: 135 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std.

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Vorlesung	Maschinelles Lernen	4	5	
2	P	Übung	Maschinelles Lernen	4	5	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Maschinelles Lernen	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren. Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der freiwilligen Übungsaufgaben werden in der Modulprüfung (Klausur) bis zu 10 \% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

INF-BSC-P17 - Digitale Bildverarbeitung I

1. Name des Moduls:	Digitale Bildverarbeitung I
	Digital Image Processing I
2. Fachgebiet / Verantwortlich:	Prof. Dorit Merhof / Lehrstuhl für Bildverarbeitung
3. Inhalte des Moduls:	Das Modul führt in die Grundlagen der Digitalen Bildverarbeitung ein. Inhalte: - Informationsträger Bild: Einführung in Methodik,
	Technik und Anwendungen der digitalen Bildverarbeitung
	Bildgebung: menschliches Auge, Kameras, andere Sensoren und Abbildungsgeometrie
Bildvorverarbeitung: Gitter und	
Interpolationsmethoden, homogene und inhomogene	
Punktoperationen	

	B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	5. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Digitale Bildverarbeitung I	2	4	
2	P	Übung	Digitale Bildverarbeitung I	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Digitale Bildverarbeitung I	Klausur oder mündliche Prüfung	Klausur: 90 min bzw. mündliche Prüfung: 25-40 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

INF-BSc-P18 - Netze und verteilte Systeme

1. Name des Moduls:	Netze und verteilte Systeme
	Computer Networks and Distributed Systems
2. Fachgebiet / Verantwortlich:	N.N. / Lehrstuhl für Verteilte Systeme
3. Inhalte des Moduls:	Das Modul gibt eine Einführung in zwei zentrale Themen der Informatik: Rechnernetze und darauf aufbauend, die Konstruktion von über mehrere Knoten verteilten Systemen. Das Modul behandelt dabei sowohl theoretische als auch praktische Aspekte. Konkrete Themen des Moduls sind: - Ethernet und andere physikalische Netzwerkkomponenten - Arbeiten mit Schichten-Modellen - Bedeutung von Normen und Standards - ISO/OSI-Referenzmodell - Wesentliche in Rechnernetzen eingesetzte Protokolle, insbesondere TCP, UDP, IP, ICMP - Routing-Methoden - Aufbau des Internets - Architektur und Eigenschaften verteilter Systeme - Middleware, insbesondere Web Services - Synchronisierung, Konsistenz und Replikation in verteilten Systemen
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls sind Studierende in der Lage: - den grundlegenden Aufbau von Rechnernetzen und des Internets zu erklären. - die Funktionalität verschiedenen Netzwerkprotokollschichten voneinander abzugrenzen, deren Zusammenspiel zu erläutern und für konkrete Anwendungen geeignete Protokolle zu wählen. - einzuschätzen, in welchen Fällen der Einsatz verteilter Systeme sinnvoll ist. - einfache verteilte Systeme anhand der im Kurs vorgestellten Rahmenwerke und Konzepte zu entwerfen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine

6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	5. Semester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Netze und verteilte Systeme	2	4	
2	P	Übung	Netze und verteilte Systeme	2	2	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/hema/Bereic h	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Netze und verteilte Systeme	Klausur	$60-120$ min	Zeitpunkt: gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der Übungsaufgaben werden in der Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsdauer spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

INF-BSC-P19 - Vortragsseminar

1. Name des Moduls:	Vortragsseminar
	Lecture Seminar
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Informatik und Data Science
3. Inhalte des Moduls:	- Literaturrecherche zu einem aktuellen InformatikThema und inhaltliche Aufbereitung - Vorbereiten und Durchführen eines wissenschaftlichen Vortrags zu diesem Thema - Beantwortung von Fragen zum Vortragsthema (vergleichbar einer wissenschaftlichen Disputation) - Anfertigen einer wissenschaftlichen Ausarbeitungen über das eigene Thema - Beteiligung an der Diskussion zu den Vorträgen der anderen Teilnehmenden
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls sind die Studierenden in der Lage, sich anhand wissenschaftlicher Literatur und Literaturrecherche Inhalte sowie den Forschungsstand zu ausgewählten Themen eigenständig zu erarbeiten. Sie können wissenschaftliche Vorträge und Texte konzipieren und ausarbeiten. Die Studierenden verfügen konkret über die Fähigkeit, Fachlich: - ein spezielles wissenschaftliches Thema der Informatik vertieft zu erörtern Methodisch: - ein wissenschaftliches Thema in mündlicher und schriftlicher Form selbständig aufzuarbeiten - wissenschaftliche Ausarbeitungen und Vorträge entsprechend ihrer sprachlichen und formalen Anforderungen zu gestalten - verschiedene Techniken zur Gestaltung wissenschaftlicher Vorträge und Texte anzuwenden - wissenschaftliche Literatur zu einem gegebenen Thema zu recherchieren - gemäß wissenschaftlicher Standards zu zitieren - die Regeln guter wissenschaftlicher Praxis einzuhalten Sozial/ethisch/rechtlich:

	- vorbereitete Themen im Rahmen einer wissenschaftlichen Disputation zu präsentieren und zu verteidigen - Resultate wissenschaftlich, gesellschaftlich und ethisch zu bewerten Selbst: - fachbezogene Themen mündlich und schriftlich zu präsentieren - wissenschaftliche Ergebnisse als Teil eines Vortrages und einer Ausarbeitung kritisch zu reflektieren - die eigenständige wissenschaftliche Arbeit zu organisieren - Selbstorganisation und Zeitmanagement umzusetzen
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundkenntnisse und Kompetenzen in Programmierung und einer objektorientierten Programmiersprache (siehe INF-BSc-PO2 und INF-BSc-P07) Grundkenntnisse von Algorithmen und Datenstrukturen (siehe INF-BSc-M06) Grundkenntnisse des Software Engineering (siehe INF-BSC-M09)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.SC. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	jedes Semester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	5. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 30 Std 2. Selbststudium: 70 Std. 3. Prüfung (inkl. Vorbereitung): 80 Std Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Seminar	Informatik	2	6	Vortrag

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer/Umfang	Zeitpunkt	Anteil an Modulnote
Informatik	Seminararbeit (schriftliche Ausarbeitung des Vortrags)	Umfang: $10-25$ Seiten	Abgabe: zum Semesterende; Bearbeitungsdauer höchstens sechs Wochen	100%

14. Bemerkungen:

INF-BSc-P20 - Bachelorarbeit

1. Name des Moduls:	Bachelorarbeit
	Bachelor's Thesis
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Informatik und Data Science
3. Inhalte des Moduls:	Mit ihrer Bachelor-Abschlussarbeit dokumentieren die Studierenden, ein (angebotenes oder auch gemeinsam mit dem Dozenten oder der Dozentin erarbeitetes) Thema der Informatik mit Hilfe der Methoden des vorangegangenen Bachelorstudiums und unter Anleitung eines Betreuers oder einer Betreuerin kritisch und eigenständig bearbeiten zu können. Fähigkeiten zur kritischen Analyse sowie schriftlichen Exposition sind wichtig und zu erlernen. Dies wird durch einen Kurs in Scientific Writing gefördert. Damit trägt die Bachelorarbeit nicht nur zur Abrundung der wissenschaftlichen Kompetenzen der Bachelorstudierenden, sondern auch unmittelbar zur Berufsqualifikation bei.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls sind die Studierenden in der Lage, ein anspruchsvolles Thema der Informatik zu analysieren, eigenständig zu erschließen sowie schriftlich überzeugend und verständlich für Dritte zu fixieren. Sie sind auf Basis der im Bachelorstudium erworbenen Kenntnisse und Kompetenzen in der Lage, wissenschaftliche Forschungsprojekte der Informatik eigenständig durchzuführen sowie ihre Methoden, Ergebnisse und Lösungsansätze zu dokumentieren, zu diskutieren, weiterzuentwickeln und zu verteidigen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	Nachweis von mindestens 120 LP aus dem Studiengang
6. Verwendbarkeit des Moduls:	B.SC. Informatik (Pflichtmodul)
7. Angebotsturnus des Moduls:	Winter- und Sommersemester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	2 Semester
9. Empfohlenes Fachsemester:	5. und 6. Fachsemester

10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:

Arbeitsaufwand:
Gesamt: 420 Std.
davon:

1. Präsenzzeit: 30 Std.
2. Selbststudium: 30 Std.
3. Bachelorarbeit: 360 Std.

Leistungspunkte: 14 LP
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

W	P/WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Seminar	Wissenschaftliches Schreiben	2	2	regelmäßige Teilnahme

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Them a/Bereich	Art der Prüfung	Dauer/Umfang	Zeitpunkt	Anteil an Modulnote
Informatik	Bachelorarbeit	Bearbeitungszeit: zwölf Wochen 20-60 Seiten (je nach Themenstellung)	nach Absprache mit dem Betreuer oder der Betreuerin	100% $(12 \mathrm{LP})$

14. Bemerkungen:

Es wird empfohlen, Modulbestandteil 1 im 5. Semester und die Bachelorarbeit im 6. Semester zu absolvieren.
Der erforderliche Umfang der Bachelorarbeit kann je nach Themenstellung zwischen 20 und 60 Seiten variieren und ist mit dem Betreuer oder der Betreuerin abzustimmen.
Die Bachelorarbeit kann in Abstimmung mit dem Betreuer oder der Betreuerin in deutscher oder englischer Sprache abgefasst werden.

Wahlpflichtmodule

Fachgebiet: Allgemeine Informatik

INF-BSc-WPO1 - Studentisches Mentoring

1. Name des Moduls:	Studentisches Mentoring
	Students Mentoring
2. Fachgebiet / Verantwortlich:	Prof. Meike Klettke / Lehrstuhl für Data Engineering
3. Inhalte des Moduls:	Teilnehmer und Teilnehmerinnen an diesem Modul führen das Studentische Mentoring durch, das die Studieneingangsphase von Erstsemesterstudierenden sowie deren erstes Semester an der Universität begleitet. Sie sind für eine Gruppe von Erstsemesterstudierenden als Mentoren und Mentorinnen tätig. Das Modul besteht aus drei Bausteinen; vor Beginn des Semesters nehmen die Mentoren und Mentorinnen an vorbereitenden Kompaktkursen teil, die auf die Aufgaben vorbereiten. Im Semester organisieren die Mentoren und Mentorinnen selbständig das studentische Mentoring für die Erstsemesterstudierenden. Dabei sind folgende Themen in jedem Fall Bestandteil des Mentoring: - Selbstmanagement - Zeitmanagement - Teamentwicklung - Lernmanagement - Lernpsychologische Theorien - Gruppendynamische Prozesse - Anwendung von Feedbackmethoden Abschluss des Moduls bildet eine Bewertung der eigenen Mentoringtätigkeit und die Evaluation des durchgeführten Mentorings, die in Form eines Berichtes erstellt wird.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls sind die Studierenden in der Lage, einzelne Studierendea oder Gruppen von Studierenden in der Studieneingangsphase zu unterstützen sowie zielgruppenspezifisch Informationen zu erarbeiten und zu präsentieren. Die Studierenden kennen die Grundlagen des Selbst- und Zeitmanagement, Lernmethoden und Teambildung und sind in der Lage,

	diese zielgruppenspezifisch und verständlich zu vermitteln. Durch das Betreuen einer Gruppe von Studierenden, die im ersten Fachsemester den Ubergang von der Schule ins Studium meistern, stellen die Mentoren und Mentorinnen ihre Fähigkeit unter Beweis, Verantwortung zu übernehmen, eigenes Wissen und Erfahrungen weiterzugeben, anderen zielführende Hilfestellung zu leisten sowie Gruppen zu organisieren.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	erfolgreiches Absolvieren von mindestens 24 LP im B.Sc. Informatik
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester 9. Empfohlenes Fachsemester:
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	ab 3. Fachsemester Gesamt: 90 Std. davon: 1. Präsenzzeit: 45 Std. 2. Selbststudium: 45 Std. 3. Prüfung (inkl. Vorbereitung): - Leistungspunkte: 3

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/WP /W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Seminar	Zeit- und Selbstmanagement	1	1	
2	P	Seminar	Mentoring	2	2	Bericht (ca. 5 Seiten pro Person)

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Be reich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
-	-	-	-	-

14. Bemerkungen:

Das Modul ist unbenotet.

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

INF-BSc-WPO2 - Einführung in die Kryptographie

1. Name des Moduls:	Einführung in die Kryptographie
	Introduction to Cryptography
2. Fachgebiet / Verantwortlich:	Prof. Juliane Krämer/ Lehrstuhl für Datensicherheit und Kryptographie
3. Inhalte des Moduls:	In diesem Modul werden die Grundlagen für das Verständnis der modernen Kryptographie gelegt. Schwerpunkte der Wissensvermittlung bilden die aktuell verwendeten kryptographischen Verfahren, sowie Möglichkeiten ihrer Kryptanalyse. Dieses Modul bildet die Grundlage für das Verständnis anderer Veranstaltungen zur Kryptographie und dient dem Einstieg in die Thematik. Mathematische Grundlagen: - Berechnungen in Kongruenz- und Restklassenringen Grundlagen der Kryptographie: - Einführung (Sicherheitsziele, Terminologie, grundlegende Prinzipien) - Historische Verfahren: Cäsar, Vigenère - symmetrische Kryptographie: Block- und Stromchiffren, DES, AES - asymmetrische Kryptographie: RSA, DiffieHellman, ElGamal - Kryptanalyse: Faktorisierung großer Zahlen, Diskrete Logarithmen - Wahrscheinlichkeit und Perfekte Sicherheit, OneTime Pad - Kryptografische Hashfunktionen - Digitale Signaturen - Identifikation - Physikalische Sicherheit - Post-Quantum-Kryptographie
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach erfolgreichem Abschluss des Moduls können die Studierenden grundlegende Begriffe aus dem Bereich der Kryptographie wiedergeben und erklären. Sie sind in der Lage, die Unterschiede zwischen symmetrischer und asymmetrischer Kryptographie zu erklären und wichtige Algorithmen der beiden Arten aufzuzählen und zu beschreiben. Die Studierenden können erklären, warum die Verfahren als sicher gelten. Sie können erklären,

	welche Bedrohungen es für Kryptographie neben der klassischen Kryptoanalyse gibt.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlagen der Mathematik und Lineare Algebra I (siehe INF-BSc-P06) Analysis II und Numerik (siehe INF-BSc-P16)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std.

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Einführung in die Kryptographie	2	4	
2	P	Übung	Einführung in die Kryptographie	2	2	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/ Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Einführung in die Kryptographie	Klausur	90 min	Zeitpunkt: gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der Übungsaufgaben werden in der Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

INF-BSc-WPO3 - Spezielle Bereiche der Allgemeinen Informatik

1. Name des Moduls:	Spezielle Bereiche der Allgemeinen Informatik
	Special Topics of General Computer Science
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Informatik und Data Science
3. Inhalte des Moduls:	Dieses Modul trägt der Vielfalt, Innovationskraft und Dynamik der Konzepte und Methoden Rechnung, die im Bereich der Allgemeinen Informatik forschungsrelevant sind. Das Modul vermittelt Kenntnisse und Kompetenzen aus einem spezifischen und/oder aktuellen Forschungsbereich der Allgemeinen Informatik.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls können die Studierenden die theoretischen und methodischen Grundlagen eines spezifischen und/oder aktuellen Forschungsbereichs der Allgemeinen Informatik erläutern. Sie sind in der Lage, diese Methoden einzusetzen, um Forschungsfelder zu explorieren, Forschungsfragen zu formulieren und eigenständig Lösungsansätze zu erarbeiten.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.SC. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jedes Semester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std . 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std . Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfült sind.
12. Modulbestandteile:

W	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Spezielle Bereiche der Allgemeinen Informatik	2	4	
2	P	Übung	Spezielle Bereiche der Allgemeinen Informatik	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Ber eich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Spezielle Bereiche der Allgemeinen Informatik	Klausur	$60-120$ min	Zeitpunkt: gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer oder deutscher Sprache angeboten.

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
Die Modulbestandteile und die Modulprüfung können auch an einer ausländischen Hochschule nach den dort geltenden Bestimmungen absolviert werden. Bei den an einer ausländischen Hochschule zu absolvierenden Lehrveranstaltungen/Modulen sind im Vergleich zu den an der Universität Regensburg im Wahlpflichtbereich angebotenen Lehrveranstaltungen/Modulen inhaltlich hinreichend andere zu wählen.

INF-BSC-WPO4 - Theoretische Grundlagen der Informatik II

1. Name des Moduls:	Theoretische Grundlagen der Informatik II
	Theoretical Computer Science II
2. Fachgebiet / Verantwortlich:	Prof. Philipp Rümmer / Lehrstuhl für Theoretische Informatik
3. Inhalte des Moduls:	Das Modul vermittelt einen vertieften Einblick in die Welt der Theoretischen Informatik, aufbauend auf dem Einführungskurs "Grundlagen der Theoretischen Informatik". Dabei werden unter anderem die folgenden Bereiche behandelt: - Lösen von Rekurrenzgleichungen. - Parsen von formalen Sprachen. - Berechnungs- und Automatenmodelle, insbesondere Turingmaschinen und Lambda-Kalkül. - Komplexitätsklassen. - Modale und temporale Logiken. - Semantik von Programmiersprachen. - Universelle Algebra und Coalgebra.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls besitzen die Studierenden ein vertieftes Verständnis der behandelten Themenbereiche in der Theoretischen Informatik. Studierende können die Definitionen der behandelten Begriffe wiedergeben, die eingeführten Konzepte in mathematischen Beweisen über Objekte der Informatik verwenden, sowie vermittelte Methoden für die Konstruktion und Analyse von Softwareprogrammen verwenden.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlagen der Theoretischen Informatik I (siehe INF-BSCP01)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.SC. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, zweijährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std . 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std .

	Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Theoretische Grundlagen der Informatik II	2	4	
2	P	Übung	Theoretische Grundlagen der Informatik II	2	2	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/ Thema/Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote		
Theoretische Grundlagen der Informatik II	Klausur oder mündliche Prüfung	Klausur: 60- 120 min oder mündliche	Zeitpunkt: gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%		
Prüfung:						
25-40 min					\quad	
:---						

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.
Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der Übungsaufgaben werden in der Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben. Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart bzw. die konkrete Prüfungsdauer spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

INF-BSc-WPO5 - Logik und Formale Methoden

1. Name des Moduls:	Logik und Formale Methoden
	Logic and Formal Methods
2. Fachgebiet / Verantwortlich:	Prof. Philipp Rümmer / Lehrstuhl für Theoretische Informatik
3. Inhalte des Moduls:	Logik stellt eine exakte Sprache zur Verfügung, in der Systeme entworfen, modelliert oder analysiert werden können. Logik gehört deshalb zum Handwerkszeug des Informatikers und ist aus der Entwicklung zuverlässiger Software oder Hardware nicht wegzudenken. Das Modul gibt eine anwendungsorientierte Einführung in die klassische Logik erster Stufe, in die Deduktionsmethoden in dieser Logik, sowie eine Einführung in die formalen Methoden zur Softwareentwicklung. Konkrete Themen sind: - Logik erster Stufe, logische Theorien. - Klassische Beweisprozeduren basierend auf Resolution und der Tableaux-Methode. - Das "Satisfiability Modulo Theories" Paradigma (SMT), die zugrunde liegenden Kalküle DPLL und CDCL. - Axiomatische Semantik von imperativen Programmiersprachen, Programmlogik. - Formale Spezifikationssprachen, Invarianten, Kontrakte. - Automatisierung formaler Methoden, ToolUnterstützung. Neben der Einführung der Konzepte legt das Modul großes Gewicht auf die praktische Anwendung von logik-basierten Methoden. Der Kurs enthält zu diesem Zweck mehrere Praktika zur Nutzung formaler Werkzeuge in der Softwareentwicklung.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach erfolgreichem Abschluss des Moduls können die Studierenden: - grundlegende Konzepte der Logik erster Stufe erklären, - einfache formale Beweise von Hand schreiben, - die Semantik einfacher Programmiersprachenkonzepte formal definieren, - gewünschte Eigenschaften von Programmen mit Hilfe von Spezifikationssprachen formal beschreiben, - gewünschte Eigenschaften einfacher Programme mit Hilfe von Verifikationstools nachweisen.
5. Teilnahmevoraussetzungen:	

a) empfohlene Kenntnisse:	Grundlagen der Theoretischen Informatik I (siehe INF-BSc- P01)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, zweijährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std.
	2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfült sind.
12. Modulbestandteile:

N	P/ WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Logik und Formale Methoden	2	4	
2	P	Übung	Logik und Formale Methoden	1	1	freiwillige Übungsaufgaben*
3	P	Lab	Logik und Formale Methoden	1	1	Erfolgreiches Lösen der Aufgaben im Lab

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz / Thema/Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Logik und Formale Methoden	Klausur oder mündliche Prüfung	Klausur: 60-120 Min oder mündliche Prüfung: $20-30$ min	Zeitpunkt: gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.

Es wird empfohlen, die Modulbestandteile 1, 2 und 3 im selben Semester zu absolvieren.
In der Lehrveranstaltung Nr. 12.3 (Labs) werden Mini-Projekte in Gruppenarbeit innerhalb eines vorgegebenen Zeitrahmens und in der Regel vor Ort in Anwesenheit eines Übungsleiters oder einer Übungsleiterin durchgeführt.
*Für erfolgreiches Lösen der Übungsaufgaben werden in der Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben. Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart bzw. die konkrete Prüfungsdauer spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

INF-BSC-WPO6 - Constraint-Modellierung und -Programmierung

1. Name des Moduls:	Constraint-Modellierung und -Programmierun
	Constraint Modelling and Progr
2. Fachgebiet / Verantwortlich:	Prof. Philipp Rümmer / Lehrstuhl für Theoretische Informatik
3. Inhalte des Moduls:	Constraint-basierte Methoden sind allgemeine Lösungsansätze, um Probleme in verschiedensten Domänen exakt und effizient zu lösen: z.B. die Berechnung optimaler Zeitpläne (Scheduling), Synthese logischer Schaltungen oder Programme, Wegberechnung, Konfiguration, Testfall-Berechnung und formale Verifikation für Software und Hardware, oder Analyse Neuronaler Netze. Modellierungssprachen machen es möglich, Probleme zu diesem Zweck Algorithmen-unabhängig zu beschreiben, so dass anschließend mit geringem Aufwand eine Vielzahl von Lösungsverfahren auf dasselbe Problem angewendet werden können. Das Modul behandelt unter anderem die folgenden Themen im Bereich Constraint-Programmierung: - die theoretische Härte von Problemen, NPVollständigkeit, polynomielle Reduktion; - eine Übersicht der verfügbaren Lösungsansätze, insbesondere Boolean Satisfiability (SAT), Satisfiability Modulo Theories (SMT), Constraint Programming (CP), stochastische lokale Suche (SLS); - detaillierte Vorstellung von zwei verbreiteten Modellierungssprachen: MiniZinc und SMT-LIB; - Ansätze und Techniken in der Problem-Modellierung; - Berechnung optimaler Lösungen. Neben der Einführung der Konzepte legt das Modul großes Gewicht auf die praktische Anwendung der Methoden Das Modul enthält zu diesem Zweck mehrere Praktika.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach erfolgreichem Abschluss des Moduls können die Studierenden: - die Härte von Problemen anhand der Komplexitätsklassen P und NP definieren, die Zugehörigkeit (einfacher) Probleme zur Klasse NP mit Hilfe von Reduktion beweisen, - die komplementären Eigenschaften der im Kurs behandelten Algorithmen diskutieren,

				- realistische Probleme mit Hilfe der im Kurs behandelten Modellierungssprachen exakt ausdrücken, - Software-Werkzeuge anwenden, um Lösungen oder optimale Lösungen von Problemen zu berechnen.				
5. Teilnahmevoraussetzungen:								
a) empfohlene Kenntnisse:				Grundlagen der Theoretischen Informatik I (siehe INF-BSCP01)				
b) verpflichtende Nachweise:				keine				
6. Verwendbarkeit des Moduls:				B.Sc. Informatik (Wahlpflichtmodul)				
7. Angebotsturnus des Moduls:				Sommersemester, zweijährlich				
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:				1 Semester				
9. Empfohlenes Fachsemester:				ab 4. Fachsemester				
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:				Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std . Leistungspunkte: 6				
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.								
12. Modulbestandteile:								
N	P/ WP / W	Lehrform	Themenbereich/	hema	SWS Std.	LP	Studienleistu	
1	P	Vorlesung	Constraint-Modelli und -Programmier		2	4		
2	P	Übung	Constraint-Modelli und -Programmier	rung ng	1	1	freiwillige Ü	fgaben*
3	P	Lab	Constraint-Modell und -Programmier			1	Erfolgreiche im Lab	der Aufgaben
Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.								
13. Modulprüfung:								
Kompetenz / Thema/Bereich			Art der Prüfung	Dauer			Zeitpunkt	Anteil an Modulnote

Constraint-	Klausur oder	Klausur: 60-120 Modellierung und - mündliche Prüfung	Zeitpunkt: gegen Ende mündliche Programmierung	Prüfung: der Vorlesungszeit bzw. in der vorlesungsfreien Zeit
		100%		
		$20-30$ Min		

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1, 2 und 3 im selben Semester zu absolvieren.

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.
*Für erfolgreiches Lösen der Übungsaufgaben werden in der Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

1. Name des Moduls:	Vortragsseminar
	Lecture Seminar
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Informatik und Data Science
3. Inhalte des Moduls:	Inhalte des Moduls sind: - Literaturrecherche zu einem aktuellen InformatikThema und inhaltliche Aufbereitung - Vorbereiten und Durchführen eines wissenschaftlichen Vortrags zu diesem Thema - Beantwortung von Fragen zum Vortragsthema (vergleichbar einer wissenschaftlichen Disputation) - Anfertigen einer wissenschaftlichen Ausarbeitungen über das eigene Thema - Beteiligung an der Diskussion zu den Vorträgen der anderen Teilnehmenden
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls sind die Studierenden in der Lage, sich anhand wissenschaftlicher Literatur und Literaturrecherche Inhalte sowie den Forschungsstand zu ausgewählten Themen eigenständig zu erarbeiten. Sie können wissenschaftliche Vorträge und Texte konzipieren und ausarbeiten. Die Studierenden verfügen konkret über die Fähigkeit, Fachlich: - ein spezielles wissenschaftliches Thema der Informatik vertieft zu erörtern Methodisch: - ein wissenschaftliches Thema in mündlicher und schriftlicher Form selbständig aufzuarbeiten - wissenschaftliche Ausarbeitungen und Vorträge entsprechend ihrer sprachlichen und formalen Anforderungen zu gestalten - verschiedene Techniken zur Gestaltung wissenschaftlicher Vorträge und Texte anzuwenden - wissenschaftliche Literatur zu einem gegebenen Thema zu recherchieren - gemäß wissenschaftlicher Standards zu zitieren - die Regeln guter wissenschaftlicher Praxis einzuhalten

	Sozial/ethisch/rechtlich: - vorbereitete Themen im Rahmen einer wissenschaftlichen Disputation zu präsentieren und zu verteidigen - Resultate wissenschaftlich, gesellschaftlich und ethisch zu bewerten Selbst: - fachbezogene Themen mündlich und schriftlich zu präsentieren - wissenschaftliche Ergebnisse als Teil eines Vortrages und einer Ausarbeitung kritisch zu reflektieren - die eigenständige wissenschaftliche Arbeit zu organisieren - Selbstorganisation und Zeitmanagement umzusetzen
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundkenntnisse und Kompetenzen in Programmierung und einer objektorientierten Programmiersprache (siehe INF-BSc-P02 und INF-BSc-P07) Grundkenntnisse von Algorithmen und Datenstrukturen (siehe INF-BSc-P08) Grundkenntnisse des Software Engineering (siehe INF-BSC-P11)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jedes Semester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 30 Std. 2. Selbststudium: 70 Std. 3. Prüfung (inkl. Vorbereitung): 80 Std Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Seminar	Informatik	2	6	Vortrag

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Ber eich	Art der Prüfung	Dauer/Umfang	Zeitpunkt	Anteil an Modulnote
Informatik	Seminararbeit (schriftliche Ausarbeitung des Vortrags)	Umfang: $10-25$ Seiten; Bearbeitungsdaue r höchstens sechs Wochen	Abgabe: zum Semesterende	100%

14. Bemerkungen:

INF-BSC-WPO8 - Datenbanken II - Architekturprinzipien und Datenstrukturen moderner Datenbanksysteme

1. Name des Moduls:	Datenbanken II - Architekturprinzipien und Datenstrukturen moderner Datenbanksysteme
	Databases II - Architectures and Data Structures of Modern Database Systems
2. Fachgebiet / Verantwortlich:	Prof. Meike Klettke / Lehrstuhl für Data Engineering
3. Inhalte des Moduls:	In diesem Modul werden die Komponenten von Datenbankmanagementsystemen (DBMS) vorgestellt. Studierende erwerben Wissen zu folgenden Themen: - Speicherstrukturen (Speicherhierarchie, Seiten, Seitenersetzungsstrategien, Indexstrukturen, Row Stores/ Column Stores - Indexstrukturen - Anfrageverarbeitung und -optimierung (Anfrageoperationen, Logische und physische Optimierung, Kostenmodelle) - Mehrbenutzerbetrieb (Serialisierbarkeit, optimistische und pessimistische Sperrverfahren, Logging und Recovery) - Trigger und Stored Procedures Weiterhin werden verschiedene Datenmodelle, deren Grundprinzipien und Anfragesprachen vorgestellt, sowie Datenbankmanagementsystemen eingeführt, die diese Daten verwalten: - Stream Daten - Datenmodell - Anfragen und Operationen - Systeme - Graph Daten - Datenmodell - Anfragen und Algorithmen auf Graphen - Systeme - NoSQL- Daten (JSON) - Datenmodell - Anfragen und Schnittstellen - Konsistenz von Daten im Mehrbenutzerbetrieb - Systeme

1	P	Vorlesung	Datenbanken II	2	4	
2	P	Übung	Datenbanken II	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Ber eich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Datenbanken II	Klausur oder mündliche Prüfung	Klausur: 90 min bzw. mündliche Prüfung: 20-25 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

INF-BSC-WP09 - Unternehmenspraktikum

1. Name des Moduls:	Unternehmenspraktikum
	Internship
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Informatik und Data Science
3. Inhalte des Moduls:	Die Studierenden absolvieren ein Praktikum in einem Unternehmen, dessen Dauer mindestens vier Wochen Vollzeitarbeit entspricht. Während des Praktikums müssen die bisherigen Inhalte des Studiums vertieft und angewendet werden, so dass die Studierenden erste berufspraktische Erfahrungen im Berufsfeld von Informatikern und Informatikerinnen erwerben und die Möglichkeit erhalten, Kontakte für den späteren Berufseinstieg aufzubauen.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls haben die Studierenden erste Erfahrungen in und eine genaue Vorstellung von dem im Praktikum kennengelernten Beruf. Neben fachlichen Kompetenzen und Kenntnissen über den Arbeitsablauf, die sich je nach Praktikum
unterscheiden, verfügen die Studierenden nach	
Abschluss des Moduls über höhere Kompetenzen in	
den Bereichen Kommunikationsvermögen,	
Teamfähigkeit sowie Kooperationsfähigkeit.	

10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:

Arbeitsaufwand:

Gesamt: mindestens 180 Stunden (Praktikumsdauer mindestens 4 Wochen in Vollzeit)

Leistungspunkte: 6
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Unterneh mensprak tikum	Informatik	min. 180 Std.	6	Praktikumsbericht (ca. 5 Seiten pro Person) und/oder Präsentation

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Bere ich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
-	-	-	-	-

14. Bemerkungen:

Das Modul ist unbenotet.

Die genauen Kriterien der Studienleistung hängen vom jeweiligen Praktikum ab und werden in einer Vorbesprechung vor dem Beginn des Praktikums mitgeteilt.

Damit ein Praktikum als Wahlpflichtmodul anerkannt wird, muss dieses von den zwei Professoren oder Professorinnen, deren Forschungsgebiete dem Praktikumsinhalt am nächsten sind, genehmigt werden.

Fachgebiet: Data Science

DAT-B-INFER - Data Science 2 (Inferenz)

1. Name des Moduls:	Data Science 2 (Inferenz)
	Data Science 2 (Inference)
2. Fachgebiet / Verantwortlich:	Prof. Thomas Jaki / Lehrstuhl für Computational Statistics Prof. Merle Behr / Lehrstuhl für Maschinelles Lernen
3. Inhalte des Moduls:	Dieses Modul organisiert, festigt und erweitert die in DAT-B-DATA erlernten Strategien der Data Science. Der Schwerpunkt liegt auf den theoretischen Grundlagen der statistischen Inferenz, wobei sowohl Themen aus der Schätz- als auch aus der Testtheorie vertiefend behandelt werden. Im Zusammenhang mit der Schätztheorie werden wir Konzepte wie Exponentialfamilien, Suffizienz, Vollständigkeit, Momentenmethode, Maximum-Likelihood-Schätzung, Fisher-Information, Cramer-Rao-Schranke und Bayes-Schätzer diskutieren. Beim Testen werden Hypothesentests und p-Werte, Likelihood-Ratio-Tests, Konfidenzbereiche und Bayes'sche Glaubwürdigkeitsintervalle sowie multiples Testen behandelt.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls haben die Studierenden vor allem Kenntnisse darüber, wie sie Datenanalyse mit Hilfe eines strengen mathematischen Rahmens verbessern können. Sie kennen klassische Dateninferenztechniken, verstehen die mathematischen Konzepte dahinter und können diese Techniken auf konkrete Fragestellungen anwenden.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlegende Programmierkenntnisse (siehe DAT-BPROG oder INF-BSc-PO2) Grundlegende Kenntnisse in Wahrscheinlichkeitstheorie (siehe DAT-B-PROB)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul)

	B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. Data Science: 3. Fachsemester B.Sc. Informatik: ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Statistische Inferenz	2	3	
2	P	Übung	Statistische Inferenz	2	3	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/hema/Be reich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote

			gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.
Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der freiwilligen Übungsaufgaben werden in der Modulprüfung (Klausur) bis zu 10 \% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

DAT-B-DE - Data Engineering

1. Name des Moduls:	Data Engineering
	Data Engineering
2. Fachgebiet / Verantwortlich:	Prof. Meike Klettke / Lehrstuhl für Data Engineering
3. Inhalte des Moduls:	Das Modul gibt einen Überblick über Data Engineering Prozesse und Pipelines sowie die verschiedenen Methoden des Data Engineering und Data Preprocessings. Im Detail werden Verfahren zur Auswahl und Extraktion von Daten, Data Cleaning (Vorhersage von fehlenden Werten, Duplikateleminierung, Outlier Detection), Datentransformation zwischen verschiedenen Datenmodellen und -strukturen, Extraktion von Daten aus unstrukturierten Datenquellen (wie Texten), Datenintegration und Grundlagen multidimensionaler Datenmodelle und deren Verwendung in Data Warehouses vorgestellt. Die Definition von Metriken zur Bewertung von Datencharakteristika wird ebenfalls anhand mehrerer Beispiele eingeführt und auf die Data Engineering Algorithmen angewendet. Verschiedene gängige Tools zum Data Engineering (wie ETL-Tools und BITools) werden vorgestellt.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls sind die Studierenden in der Lage, die Prozesse zur Datenverarbeitung, die Selektion und Extraktion von Daten, die Bewertung der Datenqualität durch verschiedene Metriken, Verfahren zur Erhöhung von Datenqualität, Anreicherung von Daten, Datentransformation und Datenintegration sowie die Bereitstellung großer Datenmengen und die skalierbare Ausführung von Anfragen auf diesen zu beschreiben und erläutern. Die Studierenden können im Besonderen einige Algorithmen von Data Engineering Pipelines erläutern und umsetzen. Nach Abschluss des Moduls verfügen die Studierenden über die Fähigkeit, Data Engineering Pipelines zu erstellen, Verfahren für Data Engineering Teilaufgaben auszuwählen, zu parametrisieren und anzuwenden sowie Data Preprocessing Prozesse zu entwickeln.
5. Teilnahmevoraussetzungen:	

a) empfohlene Kenntnisse:	Grundlegende Programmierkenntnisse (siehe DAT-B- PROG oder INF-BSc-PO2)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. Data Science: 3. Fachsemester B.Sc. Informatik: ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr	P/WP/ W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Data Engineering	2	3	
2	P	Übung	Data Engineering	2	3	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Data Engineering	Klausur oder mündliche Prüfung	Klausur: 90 min bzw. mündliche	gegen Ende der Vorlesungszeit bzw.	100%

		Prüfung: 20-25 min.	in der vorlesungsfreien Zeit	

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

DAT-B-CON-QUANT - Konnektor Quantenmechanik und Informationsverarbeitung

1. Name des Moduls:	Konnektor Quantenmechanik und Informationsverarbeitung
	Connector Quantum Mechanics and Information Processing
2. Fachgebiet / Verantwortlich:	Dr. Markus Schmitt / Quantenmechanik
3. Inhalte des Moduls:	Konnektoren sind interdisziplinäre Module, die zwei oder mehr Disziplinen miteinander verbinden. Dieses Modul verbindet die Computer- und Datenwissenschaften mit den Grundlagen der Quantenmechanik und des Quantencomputings.
Es werden die folgenden Themen behandelt:	
Prinzipien der Quantenmechanik, Verschränkung,	
Unitäre Zeitentwicklung, Quantengatter und	
Quantenschaltung, Quantenalgorithmen \quad und	
"Quantenvorteil"	

6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, zweijährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon:
1. Präsenzzeit: 60 Std. (2 SWS Vorlesung, 2 SWs	
Übung)	
2. Selbststudium: 75 Std.	
3. Prüfung (inkl. Vorbereitung): 45 Std.	
Leistungspunkte: 6	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/ Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Quantenmechanik und Informationsverarbeitung	2	3	
2	P	Übung	Quantenmechanik und Informationsverarbeitung	2	3	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Quantenmechanik und Informationsverarbeitun g	Klausur oder mündliche Prüfung	Klausur: 90 min bzw. mündliche Prüfung: 20-30 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:
[^0]| 1. Name des Moduls: | Zeitreihen |
| :---: | :---: |
| | Time Series |
| 2. Fachgebiet / Verantwortlich: | Prof. Merle Behr / Lehrstuhl für Maschinelles Lernen |
| 3. Inhalte des Moduls: | Eine Zeitreihe ist eine Reihe von numerischen Beobachtungen, die jeweils zu einem bestimmten Zeitpunkt aufgezeichnet werden.
 Solche Daten treten überall auf.
 Es werden zwei Ansätze für die Zeitreihenanalyse behandelt: der Zeitbereichsansatz und der Frequenzbereichsansatz. Ca. 60 \% des Moduls entfallen auf Methoden des Zeitbereichs und ca. 40% auf Methoden des Frequenzbereichs.
 Zu den Themen gehören:
 Trend- und Saisonalitätsmodelle, Stationarität, ARMA- / ARIMA-Modelle, Vorhersage- und Schätzmethoden, Diagnostik und Modellauswahl, (diskrete) FourierTransformation, Spektraldichte und zeitinvariante Filter. |
| 4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen: | Nach Abschluss des Moduls können die Studierenden Zeitreihendaten analysieren, wobei der Schwerpunkt auf univariaten Zeitreihendaten liegt. |
| 5. Teilnahmevoraussetzungen: | |
| a) empfohlene Kenntnisse: | Grundlegende Kenntnisse in Linearer Algebra und Analysis (siehe INF-BSC-P06)
 Grundlegende Programmierkenntnisse (siehe DAT-BPROG oder INF-BSc-PO2)
 Grundlegende Kenntnisse in Wahrscheinlichkeitstheorie (siehe DAT-B-PROB) |
| b) verpflichtende Nachweise: | keine |
| 6. Verwendbarkeit des Moduls: | B.Sc. Data Science (Wahlpflichtmodul)
 B.Sc. Informatik (Wahlpflichtmodul) |
| 7. Angebotsturnus des Moduls: | zweijährlich |
| 8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls: | 1 Semester |
| 9. Empfohlenes Fachsemester: | ab 4. Fachsemester |

10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:

Arbeitsaufwand:

Gesamt: 180 Std. davon:

1. Präsenzzeit: 60 Std.
2. Selbststudium: 75 Std.
3. Prüfung (inkl. Vorbereitung): 45 Std .

Leistungspunkte: 6
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfült sind.
12. Modulbestandteile:

Nr.	P/ WP /W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Zeitreihen	2	3	
2	P	Übung	Zeitreihen	2	3	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

KompetenzThema/B ereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Zeitreihen	Klausur oder mündliche Prüfung	Klausur: 90 min bzw. mündliche Prüfung: $20-30$ min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.
*Für erfolgreiches Lösen der Übungsaufgaben werden in der Klausur (Modulprüfung) bis zu 10\% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben. Das Modul entspricht dem Modul -VWL-BSc-EW-M03 des Bachelorstudiengangs Volkswirtschaftslehre an der Fakultät für Wirtschaftswissenschaften.

DAT-B-MODEL - Data Science 3 (Modellierung)

1. Name des Moduls:	Data Science 3 (Modellierung)
	Data Science 3 Modeling
2. Fachgebiet / Verantwortlich:	Prof. Thomas Jaki / Lehrstuhl für Computational Science
3. Inhalte des Moduls:	Dieses Modul baut auf dem Kurs DAT-B-INFER (Data Science 2 Statistische Inferenz) auf und erweitert das dort Erlernte, um (komplexe) Zusammenhänge zwischen Variablen zu beschreiben. Besonderes Augenmerk wird auf die Unterscheidung zwischen Frequentistischen und Bayesianischen Modellen gelegt. Generalisiert lineare Modelle (GLMs), welche Zielvariablen (stetig oder diskrete, nominal/ordinal or interval) mit einer oder mehreren erklärenden Variablen verbinden, werden eingeführt und deren breite Anwendung in den biomedizinischen, naturwissenschaftlichen und sozialwissenschaftlichen Wissenschaften illustriert. Hierarchische Modelle, gemischte sowie Mischverteilungsmodelle werden diskutiert und Erweiterungen zu nicht-linearen Modellen skizziert.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Die Studierenden kennen nach Abschluss des Moduls die Rolle und Limitationen von (linearen) Modellen in einem präzisen mathematischen Rahmen und sind in der Lage, diese im Kontext einer Fragestellung korrekt anzuwenden.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlegende Programmierkenntnisse (siehe DAT-BPROG oder INF-BSc-PO2) Grundlegende Kenntnisse in Wahrscheinlichkeitstheorie (siehe DAT-B-PROB) Grundlegende Kenntnisse in statistischer Inferenz (siehe DAT-B-INFER)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Pflichtmodul) B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich

8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	5. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) I Anzahl Leistungspunkte: Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP/ W	Lehrform	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Vorlesung	Statistische Modellierung	2	3	
2	P	Übung	Statistische Modellierung	2	3	freiwillige Übungsaufgaben*

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Ber eich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Statistische Modellierung	Klausur	90 min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren. Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
*Für erfolgreiches Lösen der freiwilligen Übungsaufgaben werden in der Modulprüfung (Klausur) bis zu 10 \% Bonuspunkte vergeben. Die genauen Bedingungen werden zu Beginn der Vorlesung bekannt gegeben.

Fachgebiet: Human Information Behaviour

DAT-B-CON-NLE1 - Konnektor Natural Language Engineering 1

1. Name des Moduls:	Konnektor Natural Language Engineering 1
	Connector Natural Language Engineering 1

8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte: Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/WP /W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Natural Language Engineering 1	2	4	
2	P	Übung	Natural Language Engineering 1	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

KompetenzThema/ Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Natural Language Engineering 1	Klausur oder mündliche Prüfung	Klausur: 90 min bzw. mündliche Prüfung: $20-30$ min	gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

INF-BA-M03 - Informationsverhalten verstehen

1. Name des Moduls:	Informationsverhalten verstehen 2. Fachgebiet / Verantwortlich: 3rof. Bernd Ludwig / Professur für Informationslinguistik PD Dr. David Elsweiler / Lehrstuhl für Informationswissenschaft
3. Inhalte des Moduls:	In diesem Modul wird eine empirische Fragestellung zum Informationsverhalten in Projektform bearbeitet. Dabei werden fortgeschrittene Verfahren der Datenerhebung und -auswertung adressiert. Hierzu gehört z.B. die Erhebung von Daten mit Hilfe von Log-Dateien oder die Durchführung von Feldstudien. Hinsichtlich der Datenauswertung kommen weiterführende Verfahren der Deskription (z.B. N-Q-Plots) und
Inferenzstatistik (z.B. die Untersuchung mehrerer Gruppen)	
sowie maschinelle Lernverfahren (z.B. Clusteranalyse) zu	
Anwendung.	

Leistungspunkte: 6									
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfült sind:									
12. Modulbestandteile:									
Nr .	$\begin{array}{\|l\|} \hline \text { P/ } \\ \text { WP } \end{array}$	Lehrfor m	Themenbereich/Thema			$\begin{gathered} \text { SW } \\ \text { S/ } \\ \text { Std. } \end{gathered}$	LP	Studienleistun	
1	P	Seminar	Informationsverhalten verstehen			2	4	Präsentation	
2	P	Übung	Informationsverhalten verstehen			2	2	Übungsaufgab	
Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.									
13. Modulprüfung									
Nr.	Kompetenz / Thema			Art der Prüfung	Dauer/Umfang	Zeitpunkt / Bemerkungen			Anteil an Modulnote
1	Informationsverhalten verstehen			Projektarbeit	12 Wochen, 15-20 Seiten pro Person	Abgabe zum Semesterende,			100 \%
	Bem	rkungen mpfohlen,	die Mo	ulbestandteile	und 2 im selbe	Seme	ter	absolvieren.	

DAT-B-CON-NLE2 - Konnektor Natural Language Engineering 2

1. Name des Moduls:	Konnektor Natural Language Engineering 1
	Connector Natural Language Engineering 2
2. Fachgebiet / Verantwortlich:	Prof. Udo Kruschwitz / Lehrstuhl für Informationswissenschaft
3. Inhalte des Moduls:	Konnektoren sind interdisziplinäre Module, die zwei oder mehr Disziplinen miteinander verbinden. Dieses Modul verbindet die Datenwissenschaft mit den Sprachwissenschaften und der Informationswissenschaft. Dieses Modul baut auf dem vermittelten Wissen des Moduls DAT-B-CON-NLE1 (Natural Language Engineering 1) auf. Es vermittelt weiterführende Konzepte der maschinellen Sprachverarbeitung wie beispielsweise Informationsextraktion. Weitere Themen sind Frage-Antwort-Systeme, Dialogsysteme, Chatbots und automatische Textzusammenfassung. Darüber hinaus werden aktuelle Entwicklungen neuronaler Ansätze auf dem Fachgebiet thematisiert.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Die Studierenden haben nach Abschluss des Moduls Kenntnisse zu weiterführenden Konzepten der maschinellen Verarbeitung natürlicher Sprache. Darüber hinaus verfügen sie über die praktischen Fähigkeiten, selbst effektive und skalierbare Computerprogramme zur Verarbeitung natürlicher Sprache zu entwickeln.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Grundlegende Kenntnisse der Informatik bzw. Data Science (siehe INF-BSc-P01 oder DAT-B-DATA) Grundlegende Programmierkenntnisse (siehe INF-BSc-PO2 oder DAT-B-PROG) Grundlegende Kenntnisse der maschinellen Sprachverarbeitung (siehe DAT-B-CON-NLE1)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jährlich, im Sommersemester

8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/WP /W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Natural Language Engineering 2	2	4	
2	P	Übung	Natural Language Engineering 2	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/hema/Be reich	Art der Prüfung	Dauer / Umfang	Zeitpunkt	Anteil an Modulnote
Natural Language Engineering 2	Projektarbeit	20 Wochen, $15-30$ Seiten	Abgabe: gegen Ende der Vorlesungszeit	100%

14. Bemerkungen:

Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
Die Modulprüfung (Projektarbeit) stellt eine über mehrere Wochen kontinuierliche eigenständige Gesamtausarbeitung eines (Software-)Projektes dar, typischerweise verbunden mit Design, Kontextualisierung, Implementierung, Evaluation und schriftlicher Ausarbeitung einer spezifischen Thematik.

[^1]INF-BA-M06 - Einführung in das Information Retrieval

1. Name des Moduls:	Einführung in das Information Retrieval
2. Fachgebiet / Verantwortlich:	PD Dr. David Elsweiler/ Lehrstuhl für Informationswissenschaft
3. Inhalte des Moduls:	In diesem Modul werden die Grundlagen der Indexierung und des Retrievals von Informationen aus technik- und nutzerzentrierter Perspektive vermittelt. Hierzu gehört die Vermittlung eines Grundverständnisses von: - Prinzipien der Indexierung - Methoden der automatischen Indexierung - Retrieval-Algorithmen - Evaluationsmethoden für IR-Systeme - Zusammenhängen Informationsverhalten und Systemgestaltung - Einflussgrößen auf Gestaltungs- und Evaluationsverfahren (z.B. Inhalte, Benutzer, Aufgaben)
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage, - verschiedene Konzepte des InformationRetrievals zu benennen, - Retrieval-Modelle einschließlich ihrer Mechanismen zu verstehen, - Modelle des Suchverhaltens zu skizzieren, - Suchoberflächenkomponenten zu benennen und ihre Rolle im Benutzerverhalten zu erklären, - Methoden der Evaluation von Information-Retrieval-Systemen zu beschreiben, zu vergleichen und $z u$ verwenden.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.A. Informationswissenschaft: INF-BA-M01, PI-BAM01 B.Sc. Informatik: INF-BSc-P01, INF-BSc-P02
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	Informationswissenschaft B. A. - Bachelorfach, zweites Hauptfach B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jährlich, im Sommersemester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester

9. Empfohlenes Fachsemester:	B.A. Informationswissenschaft: 4. Fachsemester B.Sc. Informatik: ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl	Arbeitsaufwand: Leistungspunkte:
	Gesamt in Stunden: 180
davon:	
	1. Präsenzzeit: 60 Std.
	2. Selbststudium (inkl. Prüfung): 120 Std.
	Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	$\begin{aligned} & \mathrm{P} / \\ & \mathrm{W} \\ & \mathrm{P} / \\ & \mathrm{W} \end{aligned}$	Lehrform	Themenbereich/Thema	$\begin{gathered} \text { SWS } \\ / \\ \text { Std. } \end{gathered}$	LP	Studienleistungen
1	P	Vorlesung	Einführung in das Information Retrieval	2	4	
2	P	Übung	Einführung in das Information Retrieval	2	2	Übungsaufgaben

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz / Thema/Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Einführung in das Information Retrieval	Klausur	90 min	Zeitpunkt: gegen Ende der Vorlesungszeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

INF-HIB-M01 - Grundlagen der symbolischen Künstlichen Intelligenz

| 1. Name des Moduls: | Grundlagen der symbolischen Künstlichen Intelligenz |
| :--- | :--- | :--- |
| | Foundations of symbolic Artificial Intelligence |

5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	5. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr .	$\begin{gathered} \text { P/ } \\ \text { WP/ } \\ \text { W } \end{gathered}$	Lehrform	Themenbereich/ Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Grundlagen der symbolischen Künstlichen Intelligenz	2	4	
2	P	Übung	Grundlagen der symbolischen Künstlichen Intelligenz	2	2	Übungsaufgaben

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Ber eich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Grundlagen der symbolischen Künstlichen Intelligenz	Klausur	90 min	Zeitpunkt: Beginn der vorlesungsfreien Zeit	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

1. Name des Moduls:	Recommender Systeme
	Recommender Systems
2. Fachgebiet / Verantwortlich:	Prof. Bernd Ludwig / Professur für Informationslinguistik
3. Inhalte des Moduls:	- Kollaborative Empfehlungen - Inhaltsbasierte Empfehlungen - Wissensbasierte Empfehlungen - Hybride Ansätze - Implementierung von Recommender Systemen mit Hilfe von Machine Learning - Erklärungen von Empfehlungen - Evaluation von Recommender Systemen
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach erfolgreichem Abschluss des Moduls können Studierende - zentrale Konzepte von Recommender Systemen nennen und erläutern, - Algorithmen des Maschinellen Lernens anwenden, um damit Recommender Systeme zu implementieren, - den Einsatz von Recommender Systemen konzipieren und realisieren, - Recommender Systeme systematisch evaluieren.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	6. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std.

Fachgebiet: Medieninformatik

MEI-BA-M05 - Usability Engineering

1. Name des Moduls:	Usability Engineering
2. Fachgebiet / Verantwortlich:	Prof. Christian Wolff / Lehrstuhl für Medieninformatik
3. Inhalte des Moduls:	In diesem Modul wird der Gestaltungsprozess zur Entwicklung gebrauchstauglicher interaktiver Systeme vermittelt. Dazu gehören Methoden, die zur Analyse des Nutzungskontextes, zur Anforderungsanalyse sowie zur Erstellung von Prototypen eingesetzt werden. Daneben führt das Modul in unterschiedliche Evaluierungsmethoden für interaktive Systeme ein.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls können die Studierenden den Verlauf von benutzerzentrierten Entwicklungsprozessen skizzieren und für jede Phase geeignete Methoden darlegen. Sie sind darüber hinaus in der Lage, ausgewählte menschzentrierte Methoden eigenständig anzuwenden, Designprobleme zu analysieren und einen konsistenten Lösungsansatz für ein Designproblem von der Anforderungsanalyse bis zur Detailspezifikation zu entwickeln.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.SC. Informatik: INF-BSC-P03
b) verpflichtende Nachweise:	B.A. Medieninformatik: MEI-BA-M04 B.Sc. Informatik: keine
6. Verwendbarkeit des Moduls:	Medieninformatik B.A. - Bachelorfach, zweites Hauptfach B.Sc Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jährlich, im Wintersemester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.A. Medieninformatik: 5. Fachsemester B.Sc. Informatik: ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 4 SWS / 60 Std. 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind:

12. Modulbestandteile:

Nr	$\left.\begin{array}{\|l\|} \mathrm{P} \\ 1 \\ \mathrm{~W} \\ \mathrm{P} \end{array} \right\rvert\,$	Lehrfor m	Themenbereich/Thema	$\begin{array}{\|c} \hline \text { SWS } \\ 1 \\ \text { Std. } \end{array}$	LP	Studienleistungen
1	P	Vorlesun g	Usability Engineering	2	4	
2	P	Übung	Usability Engineering	2	2	Übungsaufgaben

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben

13. Modulprüfung

Nr	Kompetenz / Thema	Art der Prüfung	Dauer/Umfang	Zeitpunkt / Bemerkungen	Anteil an Modulnote
1	Usability Engineering	Projektarbeit	$15-20$ Seiten pro Person	Abgabe zum Semesterende	100%

14. Bemerkungen:

Das Bestehen der Studienleistung (Übungsaufgaben) ist Voraussetzung für die Zulassung zur Modulprüfung. 75 \% der Studienleistungen müssen bestanden sein, damit die Studienleistung insgesamt bestanden ist.

Es wird dringend empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

MEI-BA-M06 - Multimedia Technology

1. Name des Moduls:	Multimedia Technology
2. Fachgebiet / Verantwortlich:	Prof. Christian Wolff / Lehrstuhl für Medieninformatik
3. Inhalte des Moduls:	Das Modul führt in grundlegende Verfahren und Standards der Multimediatechnologie, Aufbauprinzipien multimedialer (Software-)Systeme sowie medienspezifische Anforderungen und Merkmale bei der Verarbeitung digitaler Daten ein. Außerdem vermittelt das Modul grundlegende Arbeitstechniken für unterschiedlichen Medientypen (Bild, Foto, Video, Ton, Musik, Multimedia).
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Studierende sind in der Lage, Standards und Technologien im Bereich Multimedia zu bewerten und für eigene Entwicklungsarbeiten einzusetzen. Sie können entsprechende Aufgabenstellungen analysieren und in einen eigenen Lösungsansatz überführen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.A. Medieninformatik: MEI-BA-M01a (Bachelorfach) oder MEI-BA-M01b (zweites Hauptfach, Nebenfach) B.Sc. Informatik: Grundlagen der Informatik (siehe INF-BSC-P01)
b) verpflichtende Nachweise:	
6. Verwendbarkeit des Moduls:	Medieninformatik B.A. - Bachelorfach, zweites Hauptfach, Nebenfach B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jährlich, im Wintersemester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.A. Medieninformatik: 3. Fachsemester B.Sc. Informatik: ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 4 SWS / 60 Std. 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind:
12. Modulbestandteile:

Nr	P	Lehrform	Themenbereich/Thema	SWS	LP	Studienleistungen
.	/					
	Ptd.					
1	P	Vorlesung	Multimedia Technology	2	4	
2	P	Übung	Multimedia Technology	2	2	Übungsaufgaben

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung

Nr	Kompetenz / Thema	Art der Prüfung	Dauer	Zeitpunkt / Bemerkun gen	Anteil an Modulnote
1	Multimedia Technology	Klausur	90 min	Zeitpunkt: gegen Ende der Vorlesungs zeit bzw. in der vorlesungs freien Zeit	100 \%

14. Bemerkungen:

Es wird dringend empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

MEI-BA-M07 - Multimedia Engineering

1. Name des Moduls:	Multimedia Engineering
2. Fachgebiet / Verantwortlich:	Prof. Christian Wolff / Lehrstuhl für Medieninformatik
3. Inhalte des Moduls:	Das Modul führt in Entwicklungsverfahren für Softwarelösungen im Bereich multimediale Systeme ein und gibt einen Einblick in aktuelle Entwicklungsframeworks. Die Kenntnisse im Bereich der Anwendungsprogrammierung mit Schwerpunktsetzung bei multimedia programming werden vertieft.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Studierende können multimediale Anwendungen konzipieren und auf der Basis aktueller Techniken realisieren. Dabei sind sie auch in der Lage, den Entwicklungsprozess durch Anwendung geeigneter Modellierungsinstrumente systematisch zu gestalten und zu dokumentieren.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.Sc. Informatik: INF-BSc-P02
b) verpflichtende Nachweise:	B.A. Medieninformatik: PI-BA-M01, PI-BA-M02 B.Sc. Informatik: keine
6. Verwendbarkeit des Moduls:	Medieninformatik B.A. - Bachelorfach B.Sc Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jährlich, im Sommersemester
8. Das Modul kann absolviert werden in /Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.A. Medieninformatik: 4. Fachsemester B.Sc. Informatik: ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 4 SWS / 60 Std. 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind:
12. Modulbestandteile:

Nr.	P W P	Lehrfor m	Themenbereich/Thema	$\begin{gathered} \text { SWS } \\ \text { / } \\ \text { Std. } \end{gathered}$	LP	Studienleistungen
1	P	Vorlesun 9	Multimedia Engineering	2	4	
2	P	Projekts eminar	Multimedia Engineering	2	2	Übungsaufgaben

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung

Nr.	Kompetenz / Thema	Art der Prüfung	Dauer/Umfang	Zeitpunkt / Bemerkungen	Anteil an Modulnote
1	Multimedia Technology	Projektarbeit	$15-20$ Seiten pro Person	Abgabe zum Semesterende	100%

14. Bemerkungen:

Es wird dringend empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

1. Name des Moduls:				Angewandte Medieninformatik I		
2. Fachgebiet / Verantwortlich:				Prof. Christian Wolff / Lehrstuhl für Medieninformatik		
3. Inhalte des Moduls:				Das Modul führt in ein konkretes Anwendungsgebiet der Medieninformatik (z.B. Digital Humanities, Computergrafik) ein. Im Vordergrund steht dabei die Heranführung an die jeweils aktuelle Forschungssituation.		
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:				Studierende kennen die aktuelle Forschungslage in einem Anwendungsfeld der Medieninformatik. Je nach thematischer Ausrichtung erwerben sie praktische Fertigkeiten in diesem Anwendungsfeld.		
5. Teilnahmevoraussetzungen:						
a) empfohlene Kenntnisse:				keine		
b) verpflichtende Nachweise:				keine		
6. Verwendbarkeit des Moduls:				Medieninformatik B.A. - Bachelorfach, zweites Hauptfach B.Sc Informatik (Wahlpflichtmodul)		
7. Angebotsturnus des Moduls:				im Winter- und Sommersemester		
8. Das Modul kann absolviert werden in:				1 Semester		
9. Empfohlenes Fachsemester:				B.A. Medieninformatik: 4. bis 5. Fachsemester B.Sc. Informatik: ab 4. Fachsemester		
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:				Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 4 SWS / 60 Std. 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6		
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind:						
12. Modulbestandteile:						
Nr	P W	Lehrfor m	Themenbereich/Th	ma SWS / Std. 	Studienleistungen	LP

1	P	Vorlesun g	Angewandte Medieninformatik I	2		4
2	P	Projekts eminar	Angewandte Medieninformatik I	2	Projektbezogene Übungsaufgaben	2

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung

Nr	Kompetenz / Thema	Art der Prüfung	Dauer	Zeitpunkt/ Bemerkungen	Anteil an Modulnote
1	Angewandte Medieninformatik I	Projektarbeit oder Klausur	Bearbeitungs- zeit bei Projektarbeit: 12 Wochen, Umfang: 15- 20 Seiten pro Person;	Abgabe der Projektarbeit zum Semesterende	100%
Zeitpunkt der Klausur: gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit					

14. Bemerkungen:

Das Bestehen der Studienleistung ist Voraussetzung für die Zulassung zur Modulprüfung. 75 \% der Studienleistungen müssen bestanden sein, damit die Studienleistung insgesamt bestanden ist.

Die Art der Modulprüfung wird vor Vorlesungsbeginn im kommentierten Vorlesungsverzeichnis bekannt gegeben.

Es wird dringend empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

MEI-BA-M09 - Angewandte Medieninformatik II

1. Name des Moduls:				Angewandte Medieninformatik II			
2. Fachgebiet / Verantwortlich:				Prof. Christian Wolff / Lehrstuhl für Medieninformatik			
3. Inhalte des Moduls:				Das Modul vermittelt vertiefte praktische Kenntnisse in einem Anwendungsgebiet der Medieninformatik (z.B Programmierung, Mediengestaltung). Das Modu verschränkt das Format des Seminars mit der Operationalisierung einer praxisrelevanten Fragestellung: Im Seminarteil werden wesentliche Grundlagen vermittelt bzw gemeinsam erarbeitet, in der Projektphase entwickeln Studierende unter Anleitung eigenständige Lösungsansätze			
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:				Studierende können auf der Basis ihrer Kenntnisse eines technischen Anwendungsfeldes praxisrelevante Probleme analysieren, geeignete Lösungskonzepte entwickeln und diese technisch umsetzen.			
5. Teilnahmevoraussetzungen:							
a) empfohlene Kenntnisse:				keine			
b) verpflichtende Nachweise:				keine			
6. Verwendbarkeit des Moduls:				Medieninformatik B.A. - Bachelorfach, zweites Hauptfach B.Sc Informatik (Wahlpflichtmodul)			
7. Angebotsturnus des Moduls:				im Winter- und Sommersemester			
8. Das Modul kann absolviert werden in:				1 Semester			
9. Empfohlenes Fachsemester:				B.A. Medieninformatik: 5. bis 6. Fachsemester B.Sc. Informatik: ab 5. Fachsemester			
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:				Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 4 SWS / 60 Std. 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6			
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind:							
12. Modulbestandteile:							
Nr	P W	Lehrfor m	Themenbereich/Th	ma	$\begin{array}{\|l\|l} \hline \text { SWS } \\ \text { / Std. } \end{array}$	Studienleistungen	LP

1	P	Vorlesun g	Angewandte Medieninformatik II	2		4
2	P	Projekts eminar	Angewandte Medieninformatik II	2	Projektbezogene Übungsaufgaben	2

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung

Nr	Kompetenz / Thema	Art der Prüfung	Dauer/Umfang	Zeitpunkt/ Bemerkungen	Anteil an Modulnote
1	Angewandte Medieninformatik II	Projektarbeit	$15-20$ Seiten pro Person	Abgabe zum Semesterende	100%

14. Bemerkungen:

Das Bestehen der Studienleistung ist Voraussetzung für die Zulassung zur Modulprüfung. 75\% der Studienleistungen müssen bestanden sein, damit die Studienleistung insgesamt bestanden ist.

Es wird dringend empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Fachgebiet; Spezielle Anwendungsbereiche der Informatik

INF-BSc-ANW - Spezielle Bereiche der Angewandten Informatik

1. Name des Moduls:	Spezielle Bereiche der Angewandten Informatik
	Special Topics of Applied Computer Science
2. Fachgebiet / Verantwortlich:	Studiendekan oder Studiendekanin der Fakultät für Informatik und Data Science
3. Inhalte des Moduls:	Dieses Modul trägt der Vielfalt, Innovationskraft und Dynamik der Konzepte und Methoden Rechnung, die im Bereich der Angewandten Informatik forschungsrelevant sind. Das Modul vermittelt Kenntnisse und Kompetenzen aus einem spezifischen und/oder aktuellen Anwendungsbereich der Informatik.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls können die Studierenden die theoretischen und methodischen Grundlagen eines spezifischen und/oder aktuellen Anwendungsbereichs der Informatik erläutern. Sie sind in der Lage, diese Methoden einzusetzen, um Forschungsfelder zu explorieren, Forschungsfragen zu formulieren und eigenständig Lösungsansätze zu erarbeiten.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	jedes Semester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 75 Std. 3. Prüfung (inkl. Vorbereitung): 45 Std .

	Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Spezielle Bereiche der Angewandten Informatik	2	4	
2	P	Übung	Spezielle Bereiche der Angewandten Informatik	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer / Umfang	Zeitpunkt	Anteil an Modulnote
Spezielle Bereiche der Angewandten Informatik	Klausur oder Projektarbeit	Dauer der Klausur: 60-120 min Bearbeitungszeit der Projektarbeit: 12 Wochen Umfang der Projektarbeit: 1520 Seiten pro Person	Zeitpunkt der Klausur: gegen Ende der Vorlesungszeit bzw. in der vorlesungsfreien Zeit Abgabe der Projektarbeit: zum Semesterende	100\%

14. Bemerkungen:

Das Modul wird in englischer oder deutscher Sprache angeboten.

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Die Modulbestandteile und die Modulprüfung können auch an einer ausländischen Hochschule nach den dort geltenden Bestimmungen absolviert werden. Bei den an einer ausländischen Hochschule zu absolvierenden Lehrveranstaltungen/Modulen sind im Vergleich zu den an der Universität Regensburg

[^2]
Fachgebiet: Wirtschaftsinformatik

WI-BSc-IBIS-M01a - Digital Business I: Geschäftsmodelle und Prozesse

1. Name des Moduls:	Digital Business I: Geschäftsmodelle und Prozesse
	Digital Business I: Business Models and Processes
2. Fachgebiet / Verantwortlich:	Prof. Susanne Leist / Lehrstuhl für Wirtschaftsinformatik III
3. Inhalte des Moduls:	Das Modul führt in die Grundlagen des Digital Business und datengetriebener Geschäftsmodelle ein. Es behandelt Grundlagen des Digital Business aus der Konsumentenperspektive und der Anbieterperspektive, elektronische Märkte sowie Veränderungen von Geschäftsmodellen und Prozessen. Dabei adressiert das Modul insbesondere die digitale Transformation und ihre Wirkungen auf Wertschöpfungsstrukturen und Lieferketten, Geschäftsmodelle und Prozesse sowie weitere Herausforderungen (u.a. Kollaborative Modellierung, Kultur). Schließlich behandelt das Modul "Digital Transformation Strategies" and „Structural Change" und adressiert hierbei IS/IT-Strategien, Business-IT Alignment und Digital Business Strategy.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls kennen die Studierenden die Bedeutung des Digital Business, wissen über innovative Internettechnologien Bescheid und haben sich mit Digital Business sowohl aus Konsumenten- als auch aus Anbieterperspektive auseinandergesetzt. Ebenfalls wissen sie um die Vor- und Nachteile sowie Besonderheiten elektronischer Märkte. Insbesondere können sie die Leistungserstellung von Unternehmen im Digital Business anhand von Wertschöpfungsnetzwerken, Geschäftsmodellen und Prozessmodelle beschreiben und modellieren, sowie auf Basis dessen, Gestaltungsempfehlungen ableiten. Darüber hinaus kennen sie IS-IIT-Strategien sowie die Phasen zur Entwicklung der IS-IIT-Strategien.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	WI-BSC-WI-M02 Unternehmensmodellierung oder WI-BSc-AWI-M04 Architektur von Informationssystemen

Kompetenz/Them a/Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Digital Business I: Geschäftsmodelle und ProzesseKlausur oder mündliche Prüfung	Klausur: 60 min bzw. mündliche Prüfung: 20-30 min	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%	

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.
Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

WI-BSc-IBIS-M02a - Digital Business II: Netzwerke und Digitale Märkte

1. Name des Moduls:	Digital Business II: Netzwerke und Digitale Märkte
	Digital Business II: Networks and Digital Markets
2. Fachgebiet / Verantwortlich:	Prof. Daniel Schnurr / Lehrstuhl für Maschinelles Lernen, insbes. Uncertainty Quantification
3. Inhalte des Moduls:	Das Modul führt in die grundlegenden ökonomischen Charakteristika von Informationsgütern und digitalen Märkten, digitale Infrastrukturen sowie Informationsund Kommunikationssysteme ein. Es behandelt direkte und indirekte (datengetriebene) Netzwerkeffekte, Online-Plattformen und digitale Plattformökosysteme sowie Datensammlung, Datenbewertung und Privatsphäre-Aspekte in der Datenökonomie. Schließlich werden verschiedene datengetriebene Anwendungen in digitalen Märkten (z.B. Suchmaschinen, Empfehlungssysteme, Reputationssysteme) sowie die Informationsflüsse zwischen Organisationen in diesen Märkten behandelt.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls haben die Studierenden ein grundlegendes Verständnis für die spezifischen ökonomischen Charakteristika des Digital Business entwickelt. Dies umfasst insbesondere das Wissen um die besonderen Eigenschaften von Informationsgütern, die Auswirkungen von (datengetriebenen) Netzwerkeffekten, Standardisierung und Kompatibilität, die Rolle von Daten für digitale Geschäftsmodelle sowie Anforderungen und Nutzen von Informations- und Kommunikationssystemen. Die Studierenden kennen die theoretischen ökonomischen Grundlagen und die praktische Bedeutung von Online-Plattformen und Plattformökosystemen in der Datenökonomie. Schließlich kennen die Studierenden typische digitale Märkte und verfügen über Kompetenzen zur Modellierung, Analyse und Gestaltung datengetriebener Anwendungen und von Informationsflüssen innerhalb dieser Märkte.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Keine

| b) verpflichtende Nachweise: | Keine |
| :--- | :--- | :--- | :--- |
| 6. Verwendbarkeit des Moduls: | B.Sc. WInfo (PO2021), Schwerpunktmodulgruppe
 "Digital Business, IT Security und Data Science \& AI
 Applications"
 B.A. WInfo (PO2022), Pflichtmodulgruppe "Digital
 Business, IT Security und Data Science \& AI
 Applications"
 B.Sc. Digital Business, Schwerpunktmodulgruppe
 "Digital Information Systems"
 B.Sc. BWL (PO2021), Vertiefungsmodulgruppe
 "Wirtschaftsinformatik"
 B.Sc. Data Science (Wahlpflichtmodul) |
| B.Sc. Informatik (Wahlpflichtmodul) | |

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Digital Business II: Netzwerke und Digitale Märkte	Klausur oder mündliche Prüfung	Klausur: 60 Minuten bzw. mündliche Prüfung: 20-30 min	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

WI-BSc-AWI-M04 - Architektur von Informationssystemen

1. Name des Moduls:	Architektur von Informationssystemen
	Information systems architecture
2. Fachgebiet / Verantwortlich:	Prof. Stefan Schönig / Professur für Wirtschaftsinformatik, insb. IoT-basierte Informationssysteme
3. Inhalte des Moduls:	Das Modul adressiert Grundlagen der Architektur von Informationssystemen, insbesondere den Aufbau und die Implementierung relationaler Datenbanksysteme. Es werden folgende Inhalte vermittelt: - Relationale Datenbank-Architektur - Datenbanken-Schichten (DB- Pufferverwaltung, Satzverwaltung, Zugriffspfade, Indexstrukturen, Operatoren) - Relationale Datenbank-Transaktionen, Serialisierung, Trigger Darüber hinaus vermittelt das Modul den grundlegenden Aufbau von Data Warehouse-Systemen: - Schichten-Architektur von DW-Systemen - Konzeptuelle Modellierung von DWInformationssystemen - Aufbauend auf der Datenhaltungsschicht werden grundlegende Inhalte zu prozessorientierten Informationssystemen vermittelt: - Prozessmodellierung, Prozessmodellierungsnotationen (z.B. BPMN) - Prozessmanagementsysteme und Prozessautomatisierung - Deskriptive Prozesse sowie standardisierte Notationen (z.B. CMMN und DMN)
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls haben Studierende Kenntnisse über den Aufbau von modernen Informationssystemen erworben. Sie verstehen die Architektur von relationalen und transaktionsbasierten Datenbanksystemen. Sie sind in der Lage, komplexe, datenbasierte Arbeitsabläufe in IS zu modellieren und zu implementieren.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine

6. Verwendbarkeit des Moduls:	B.Sc. WInfo (PO2021), Pflichtmodulgruppe "Allgemeine Wirtschaftsinformatik für Studierende der Wirtschaftsinformatik" B.Sc. Informatik
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Gesamt in Stunden: 180 (6 ECTS*30 Stunden) davon: 1. Präsenzzeit: 60 Std. (4 SWS) 2.Selbststudium (inkl. Prüfung): 120 Std. (2/3*Gesamtzeit)
Leistungspunkte: 6	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Vorlesung	Architektur von Informationssystemen	2	3	
2	P	Übung	Architektur von Informationssystemen	2	3	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Architektur von Informationssystemen	Klausur	60 Minuten	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:
[^3]DAT-B-CON-PROCESS - Process Science

1. Name des Moduls:	Konnektor Process Science
	Connector Process Science
2. Fachgebiet / Verantwortlich:	Prof. Bernd Heinrich / Lehrstuhl für Wirtschaftsinformatik II Prof. Susanne Leist / Lehrstuhl für Wirtschaftsinformatik III Prof. Stefan Schönig / Professur für Wirtschaftsinformatik, insb. IoT-basierte Informationssysteme
3. Inhalte des Moduls:	Konnektoren sind interdisziplinäre Module, die zwei oder mehrere Disziplinen miteinander verbinden. Dieses Modul verknüpft Data Science mit der Analyse von betrieblichen Geschäftsprozessen Wertschöpfungsnetzen. $\begin{array}{lccr}\text { Das Modul adressiert } & \text { Grundlagen } \quad \text { des } \\ \text { Prozessmanagements und } & \text { Process } & \text { Science, } \\ \text { Prozessmodellierung und } & \text { Modellierungsmuster, } \\ \text { Prozessmodellierungsnotationen } & \text { (z.B. } & \text { BPMN), }\end{array}$ Modellierungsrichtlinien, Prozessoptimierung, Simulation von Prozessen, Prozess- und Modellierungsformalismen (Prozesskalküle, Petri-Netze, Workflow-Netze, Temporale Logiken, etc.), Prozessmanagementsysteme und Prozessautomatisierung. Zudem behandelt das Modul Process Mining: Ereignisprotokolle, Process Intelligence, Algorithmen zum automatisierten Process Discovery, Abweichungsanalyse und Conformance Checking (insb. datenbasierte und deskriptive Prozesse sowie standardisierte Notationen (z.B. CMMN und DMN) und Robotic Process Automation).
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls haben Studierende Kenntnisse über den Aufbau von modernen prozessorientierten Informationssystemen und können Methoden des Data Science in diesem Kontext anwenden. Sie verstehen die verschiedenen Phasen des Prozessmanagements und sind in der Lage, die Techniken und Technologien der Prozessmodellierung und Prozessautomatisierung zur technischen Implementierung prozessorientierter Informationssysteme einzusetzen.

	Darüber hinaus kennen die Studierenden die grundlegenden Formalismen der Prozess-Modellierung, - Simulation und -Ausführung.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	keine
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Data Science (Wahlpflichtmodul) B.Sc Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. Data Science: ab 2. Fachsemester B.Sc. Informatik: ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 180 davon: 1. Präsenzzeit: 60 Std. 2. Selbststudium: 90 Std. 3. Prüfung (inkl. Vorbereitung): 30 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/WP /W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Process Science	2	3	
2	P	Übung	Process Science	2	3	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

KompetenzThema/Ber eich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Process Science	Klausur oder mündliche Prüfung	Klausur: 60 min bzw. mündliche Prüfung: 20-30 min	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

WI-BSc-IBIS-M06 - Explainable AI

1. Name des Moduls:	Explainable AI
	Explainable AI
2. Fachgebiet / Verantwortlich:	Prof. Bernd Heinrich / Lehrstuhl für Wirtschaftsinformatik II
3. Inhalte des Moduls:	Inhalte des Moduls sind: - Transparenz und Erklärbarkeit von KI-Systemen - Überblick über verschiedene Methoden zur Erklärbarkeit der Entscheidungen maschineller Lernverfahren - Detaillierte Darstellung ausgewählter Methoden zur Erklärbarkeit der Entscheidungen maschineller Lernverfahren für strukturierte und unstrukturierte Daten (z.B. auch von Bilddaten) - Rechtliche Aspekte von KI-Systemen und die Notwendigkeit von Explainable AI - Anwendung von Explainable AI-Ansätzen in ausgewählten realen Fallbeispielen
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls kennen die Studierenden verschiedene Techniken und Verfahren zur Gewährleistung und Bewertung von Transparenz und Erklärbarkeit maschineller Lernverfahren sowie die Visualisierung von Prognosen und Entscheidungen. Studierende sind darüber hinaus in der Lage, diese Verfahren selbständig anzuwenden und verstehen deren theoretische Grundlagen. Studierende kennen die Vor- und Nachteile sowie Limitationen einzelner Verfahren und können auf dieser Basis Explainable AIMethoden anwenden und informierte wirtschaftliche Abwägungen treffen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Veranstaltung „Data Analytics: Methoden und Programmierung" (siehe WI-BSc-AWI-M03) und „Algorithmen, Datenstrukturen und Programmierung" (WI-BSC-IT-M02) oder „Maschinelles Lernen" (siehe DAT-B-ML)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. WInfo (PO2021), Schwerpunktmodulgruppe "Digital Business, IT Security und Data Science \& AI Applications" B.A. WInfo (PO2022), Pflichtmodulgruppe "Digital Business, IT Security und Data Science \& AI Applications" B.Sc. Digital Business, Schwerpunktmodulgruppe "Digital Information Systems"

	B.Sc. Data Science (Wahlpflichtmodul) B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 180 (6 ECTS*30 Stunden) davon: 1. Präsenzzeit: 60 Std. (4 SWS) 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS /Std.	LP	Studienleistungen
1	P	Vorlesung	Explainable Al	2	3	
2	P	Übung	Explainable Al	2	3	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Explainable AI	Klausur	90 Minuten	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

WI-BSc-WI-M04 - Methoden und Management der Softwareentwicklung

1. Name des Moduls:	Methoden und Management der Softwareentwicklung
	Methods and Management of Software Development
2. Fachgebiet / Verantwortlich:	Prof. Julia Klier / Professur für Wirtschaftsinformatik, insb. Internet Business \& Digitale Soziale Medien
3. Inhalte des Moduls:	Grundlagen und Methoden zur Entwicklung von Software sowie zum Management von IT-Projekten. Im Besonderen Fokus auf: IT-Projektmanagement: - Integrationsmanagement - Inhalts- und Umfangsmanagement - Terminmanagement - Kostenmanagement Phasen und Vorgehensmodelle der Softwareentwicklung: - Charakteristika und Einsatzmöglichkeiten von klassischen Vorgehensmodellen (z. B. Wasserfallmodell, V-Modell, Spiralmodell) - Charakteristika und Einsatzmöglichkeiten von agilen Vorgehensmodellen (z.B. Scrum) Softwaremodellierung mit UML - Use-Case-Diagramme - Aktivitätsdiagramme - Sequenzdiagramme
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls können die Studierenden Methoden zur Entwicklung von Software sowie zum Management von IT-Projekten benennen. Sie können aufzeigen, in welchen Projektphasen und mit welcher Zielsetzung Methoden zum ITProjektmanagement angewendet werden. Darüber hinaus werden sie Vor- und Nachteile verschiedener Vorgehensmodelle der Softwareentwicklung darlegen und erläutern können. Im Rahmen von Fallstudienarbeiten konnten die Studierenden die erlernten Methoden (z. B. zur Terminplanung, dem Kostenmanagement und der Modellierung von

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Software) anwenden und die Ergebnisse } \\ \text { interpretieren. } \\ \text { Die Übung hat die Inhalte der Vorlesung an Beispielen }\end{array} \\ \text { vertieft. Studierende sind danach in der Lage, } \\ \text { praktische Problemstellungen mithilfe ausgewählter analysieren und praktische } \\ \text { Tools zu } \\ \text { Handlungsempfehlungen abzuleiten. }\end{array}\right\}$
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Methoden und Management der	2	3	

			Softwareentwicklung			
2	P	Übung	Methoden und Management der Softwareentwicklung	2	3	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Methoden und Management der Softwareentwicklung	Klausur	60 Minuten	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

Fachgebiet: Wirtschaftswissenschaften
DB-BSc-FI-M01 - Digital Real Estate

1. Name des Moduls:	Digital Real Estate
	Digital Real Estate
2. Fachgebiet / Verantwortlich:	Prof. Wolfgang Schäfers / Lehrstuhl für Immobilienmanagement
3. Inhalte des Moduls:	Das Modul „Digital Real Estate" beschäftigt sich mit dem Thema des Innovations- und Gründungsmanagements in der Finanz- und Immobilienwirtschaft. Die wichtigsten aktuellen technologischen Trends, sowie deren Auswirkungen auf die Finanz- und Immobilienwirtschaft werden thematisiert und ausführlich anhand praktischer Beispiele dargestellt. Schwerpunktmäßig beschäftigt sich die Veranstaltung mit der „Blockchain-Technologie". Neben den technologischen Grundlagen werden hierbei insbesondere sogenannte Kryptoassets und deren gesamtwirtschaftliche Bedeutung im Rahmen der Kryptoökonomie besprochen. Beim Thema Gründungsmanagement werden die zentralen Bausteine einer Unternehmensgründung im finanz- und immobilienwirtschaftlichen Bereich (PropTechs vs. FinTechs) behandelt und weiterhin die Themen „Venture Capital" und die Finanzierung von Prop-Techs \& FinTechs angeschnitten. Im Rahmen einer jährlich wechselnden semesterbegleitenden Gruppenarbeit erhalten die Studierenden zudem die Möglichkeit ihre Expertise im Bereich Digitalisierung, Kryptoassets, Kryptowährungen und Blockchain-Technologie durch die Entwicklung konkreter Anwendungsbeispiele weiterzuentwickeln.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls verfügen die Studierenden über eine Sensibilität für aktuelle technologische Trends/Innovationen sowie deren Anwendungsmöglichkeit in der Finanz- und Immobilienwirtschaft. Durch die vertiefte Behandlung der „BlockchainTechnologie" haben die Studierenden darüber hinaus ein tiefes Verständnis für die Bedeutung von

	Kryptoassets \& Kryptowährungen im betriebs- und gesamtwirtschaftlichen Kontext. Zusätzlich verfügen die Studierenden über wichtige Kenntnisse im Bereich des Gründungsmanagements und sind in der Lage, die wichtigsten Aspekte der Unternehmensgründung und deren Finanzierung voneinander abzugrenzen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.Sc. Digital Business: Phase I abgeschlossen
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. Digital Business, Schwerpunktmodulgruppe "BWL2: Finanzmanagement" B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/ Vorgesehene Dauer des Moduls:	1 Semester 9. Empfohlenes Fachsemester: B.Sc. Digital Business: 4. Fachsemester B.Sc. Informatik: ab 4. Fachsemester
10. Arbeitsaufwand des Moduls	
(Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. (2 sWs Vorlesung, 2 SWs Übung) 2. Selbststudium (inkl. Prüfung): 120 Std.
Leistungspunkte: 6	

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Digital Real Estate	2	4	
2	P	Übung	Digital Real Estate	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Be reich	Art der Prüfung	Dauer/Umfang	Zeitpunkt	Anteil an Modulnote
Digital Real Estate	Klausur	60 Minuten	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	50%
Digital Real Estate	Fallstudienarbe it	Umfang: max. 10 Seiten Inhalt	innerhalb der Vorlesungszeit	50%

14. Bemerkungen:

Die Wiederholungsprüfung ist grundsätzlich nicht für Erstschreiber offen.

BWL-BSC-PG-M01 - Leistungserstellung

1. Name des Moduls:	Leistungserstellung
	Operations Management
2. Fachgebiet / Verantwortlich:	Prof. Andreas Otto / Lehrstuhl für Controlling und Logistik
3. Inhalte des Moduls:	Nach einer grundlegenden Einführung in die Aufgaben des Produktionsmanagements behandelt die Vorlesung zunächst die Bedingungen für den effizienten Einsatz der Produktionsfaktoren Material, Betriebsmittel und menschliche Arbeit. Insbesondere geht es dabei um Fragen der Materialbeschaffung und -bereitstellung, Lagerhaltung, Fertigungsorganisation, Arbeitsgestaltung und entlohnung. Daran schließt sich eine Darstellung der in der Praxis vorherrschenden Produktionsplanungs- und steuerungssysteme an. Im Vordergrund stehen Konzepte der Prognoserechnung, Produktionsprogrammplanung, Materialbedarfsplanung, Termin- und Kapazitätsplanung, Produktionssteuerung (Reihenfolgeplanung) und neuere Systeme wie Kanban oder Just-in-Time-Produktion.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls sind die Studierenden in der Lage, die in der Literatur vorgeschlagenen und in der Praxis eingesetzten Konzepte und Instrumente zur Planung und Steuerung industrieller Leistungserstellungsprozesse auszuwählen und anwenden zu können.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.SC. BWL: Quantitative Grundlagen aus der Studienphase 1. B.SC. Informatik: Quantitative Grundlagen (INF-BSC-P05 und DAT-B-PROB)
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.SC. BWL (PO2021), Pflichtmodulgruppe "Betriebswirtschaftslehre für Studierende der BWL" NF BWL (PO2008), Pflichtmodulgruppe "Betriebswirtschaftslehre für Studierende anderer Bachelorstudiengänge"

	B.Sc. Digital Business, Forschungsmodulgruppe "Wertschöpfungsmanagement" B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	im Turnus Wintersemester
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. BWL, NF BWL: 3. Fachsemester B.Sc. Informatik: ab 3. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. (2 SWS Vorlesung, 2 SWS Übung) 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

N	P/WP / W	Lehrform	Themenbereich/ Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Leistungserstellung	2	4	
2	P	Übung	Leistungserstellung	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Leistungserstellung	Klausur	60 Minuten	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

BWL-BSc-BA-M01 - Applied Data Science

1. Name des Moduls:	Applied Data Science
	Applied Data Science
2. Fachgebiet / Verantwortlich:	Prof. Daniel Rösch / Lehrstuhl für Statistik und Risikomanagement
3. Inhalte des Moduls:	Inhalte des Moduls sind: - Kurze Einführung in die Schätztheorie - Statistische Modellierung und angewandte Regressionsanalyse - Einführung Data Science (Supervised und Unsupervised Learning)
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls haben die Studierenden ein fundiertes Verständnis von grundlegenden Modellen und Methoden der Data Science, sind mit der Behandlung komplexer Datenstrukturen vertraut, und können Statistik als Prognose- und Entscheidungshilfe in realen Situationen der Praxis mit moderner Software einsetzen. Die Übung hat dabei die Inhalte der Vorlesung an Beispielen und Fallstudien vertieft und die Studierenden in die Lage versetzt, eigenständige statistische Analysen zu betreiben.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.Sc. BWL, VWL, DB: WiWi-BSc-Q02 Statistik 1 für Wirtschaftswissenschaften, Wiwi-BSc-Q03 Statistik 2 für Wirtschaftswissenschaften B.Sc. Informatik: DAT-B-PROB, DAT-B-MODEL
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.SC. BWL (PO2021), Vertiefungsmodulgruppe "Business Analytics" B.SC. VWL (PO2021), Schwerpunktmodulgruppe "Empirische Wirtschaftsforschung" B.Sc. Digital Business, Pflichtmodulgruppe "Data Analytics" B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester

9. Empfohlenes Fachsemester:	B.Sc. BWL, VWL, Digital Business: 4. Fachsemester B.Sc. Informatik: ab 4. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. (2 SWS Vorlesung, 2 sWS Übung) 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.

12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Vorlesung	Applied Data Science	2	4	
2	P	Übung	Applied Data Science	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Berei ch	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Applied Data Science	Klausur	90 Min	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

- Die Wiederholungsprüfung ist grundsätzlich nicht für Erstschreiber offen (Ausnahmen: Krankheit und Auslandsaufenthalt).
- Studierende (WiWi), die Statistik III belegt haben, können diesen Kurs nicht belegen.

BWL-BSc-WM-M02 - Logistik

1. Name des Moduls:	Logistik
	Logistics
2. Fachgebiet / Verantwortlich:	Prof. Andreas Otto / Lehrstuhl für Controlling und Logistik
3. Inhalte des Moduls:	Die Vorlesung gibt eine Einführung in die betriebswirtschaftliche Logistik. Dies erfolgt entlang der elementaren logistischen Funktionen Transport, Umschlag/Kommissionierung und Lager. Die Vorlesung endet mit der Vermittlung der in der Logistik eingesetzten NummerierungsIdentifikationstechniken sowie einer kurzen Diskussion von Trade-Off-Entscheidungen. Die Ausführungen konzentrieren sich immer auf die betriebswirtschaftlichen Probleme. Technische Probleme werden nur am Rand angesprochen.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls sind die Studierenden in der Lage, logistische Systeme in der Praxis qualitativ und quantitativ zu analysieren, zu bewerten und konzeptbasiert Empfehlungen zu deren Gestaltung zu geben.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Keine
b) verpflichtende Nachweise:	Keine
6. Verwendbarkeit des Moduls:	B.SC. BWL (PO2021), Schwerpunktmodulgruppe "Wertschöpfungsmanagement" B.Sc. VWL (PO2021), Vertiefungsmodulgruppe "Themen der Betriebswirtschaftslehre" B.Sc. Digital Business, Schwerpunktmodulgruppe "BWL 1: Wertschöpfungsmanagement B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Sommersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	BSC BWL, VWL, DB: 4. Fachsemester BSc Informatik: ab 4. Fachsemester

10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:

Arbeitsaufwand:
Gesamt in Stunden: 180 (6 ECTS * 30 Stunden)
davon:

1. Präsenzzeit: 60 Std. (4 SWS)
2. Selbststudium (inkl. Prüfung): 120 Std.

Leistungspunkte: 6
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Logistik	2	4	
2	P	Übung	Logistik	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Ber eich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Logistik	Klausur	60 Minuten	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

1. Name des Moduls:	Produktionsmanagement
	Production Management
2. Fachgebiet / Verantwortlich:	Prof. Justus Arne Schwarz / Lehrstuhl für BWL, insb. Produktionsmanagement
3. Inhalte des Moduls:	Das Modul bietet eine Einführung in Konzepte und Methoden des Produktionsmanagements im Kontext von schlanken Produktionssystemen und der Industrie 4.0. Ursachen und Auswirkungen von Variabilität in Produktionssystemen werden diskutiert. Es werden verschiedene betriebswirtschaftliche Planungsprobleme betrachtet, dazu gehören beispielsweise die Fließbandabstimmung, die Pufferallokation und die Losgrößenplanung. Die Studierenden werden an die Formalisierung und Lösung von Planungsproblemen mittels gemischtganzzahliger Programmierung herangeführt. Dieser Lösungsansatz wird anhand von Praxisbeispielen diskutiert.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss dieses Moduls sind die Studierenden in der Lage, Planungsaufgaben in Produktionssystemen quantitativ zu lösen. Die Studierenden haben nach Abschluss des Moduls: - Einen Überblick über Voraussetzungen, Ziele und Schlüsselkonzepte von schlanken Produktionssystemen. - Ein Verständnis der Ursachen und Auswirkungen von Variabilität in Produktionssystemen. - Kenntnisse über neue Technologien der Industrie 4.0 und deren Einsatzpotenzial im Produktionsmanagement
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.Sc. BWL und Digital Business: BWL-BSC-PG-M01 Leistungserstellung B.Sc. Informatik: BWL-BSc-PG-M01 Leistungserstellung
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.SC. BWL (PO2021), Pflichtmodulgruppe "Betriebswirtschaftslehre für Studierende der BWL"

	B.Sc. Digital Business, Forschungsmodulgruppe "Wertschöpfungsmanagement" B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. BWL und B.Sc. Digital Business: 3. oder 5. Fachsemester B.Sc. Informatik: 5. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. (4 SWS) 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Produktionsmanagement	2	4	
2	P	Übung	Produktionsmanagement	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

KompetenzThema/Bereic h	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Produktionsmanagement	Klausur	90 min	im regulären Prüfungszeitraum	100%

14. Bemerkungen:

VWL-BSC-GL-M05 - Einführung in die Ökonometrie

1. Name des Moduls:	Einführung in die Ökonometrie
	Introductory Econometrics
2. Fachgebiet / Verantwortlich:	Prof. Lea Cassar / Lehrstuhl für Empirische Wirtschaftsforschung
3. Inhalte des Moduls:	Einführung in ökonometrische Methoden für die empirische Wirtschaftsforschung: - Erweiterung statistischer Grundkenntnisse - Das einfache und multiple lineare Regressionsmodell und die Interpretation der Modellparameter - Der Kleinst-Quadrate-Schätzer (KQ-Schätzer) und der (anwendbar) verallgemeinerte KQ-Schätzer: statistische und algebraische Eigenschaften - Statistische Tests für eine einzelne und von mehreren Hypothesen (t-Test, F-Test); Konfidenzintervalle - Modellspezifikation und Modelldiagnose - Zulassen von Heteroskedastie beim Schätzen und Testen - Prognosen und Prognosefehler - Empirische Anwendungen mit R
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls können die Studierenden die Grundlagen ökonometrischer Werkzeuge und die zugrunde liegende ökonometrische Theorie benennen und aufzeigen, wie diese in der empirischen Analyse eingesetzt werden können. Darüber hinaus sind die Studierenden nach Abschluss des Moduls in der Lage, eigenständig die gelernten Verfahren anzuwenden, um damit einfache empirischökonometrische Analysen durchzuführen und dabei auch die Unsicherheit der Ergebnisse zu bewerten. Die Übung hat die Inhalte der Vorlesung mit selbst zu lösenden Aufgaben und empirischen Beispielen vertieft und die Studierenden in die Lage versetzt, mit ökonometrischer Software (R) umzugehen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	B.Sc. BWL, Immo, VWL, IVWL, Digital Business: WiWi-BSc-Q02 Statistik 1 für Wirtschaftswissenschaften, Wiwi-BSC-Q03 Statistik 2 für Wirtschaftswissenschaften B.Sc. Informatik: DAT-B-PROB, DAT-B-INFER
b) verpflichtende Nachweise:	Keine

6. Verwendbarkeit des Moduls:	B.Sc. BWL (PO2021), Vertiefungsmodulgruppe "Business Analytics" B.Sc. Immo (PO2021), Pflichtmodulgruppe "Grundlagen der VWL für Studierende der Immobilienwirtschaft" B.Sc. VWL (PO2021), Pflichtmodulgruppe "Grundlagen der VWL für Studierende der VWL" B.Sc. IVWL (PO2021), Pflichtmodulgruppe "Grundlagen der VWL für Studierende der iVWL" B.Sc. Digital Business, Pflichtmodulgruppe "Data Analytics" B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Wintersemester, jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	1 Semester
9. Empfohlenes Fachsemester:	B.Sc. BWL, Immo, VWL, IVWL, Digital Business: 3. bzW. $5 . ~ F a c h s e m e s t e r ~$ B.Sc. Informatik: 5. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt: 180 Std. davon: 1. Präsenzzeit: 60 Std. (4 SWS) 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
1	P	Vorlesung	Einführung in die Ökonometrie	2	4	
2	P	Übung	Einführung in die Ökonometrie	2	2	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

Kompetenz/Thema/Bereic h	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Einführung in die Ökonometrie	Klausur	90 min	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	100%

14. Bemerkungen:

Die Wiederholungsprüfung ist grundsätzlich nicht für Erstschreiber offen (Ausnahmen: Krankheit und Auslandsaufenthalt).

VWL-BSc-EW-M03 - Zeitreihenökonometrie

1. Name des Moduls:	Zeitreihenökonometrie
	Time Series Econometrics
2. Fachgebiet / Verantwortlich:	Prof. Rolf Tschernig / Lehrstuhl für Ökonometrie
3. Inhalte des Moduls:	Einführung in ökonometrische Methoden für die empirische Analyse von Zeitreihendaten: - Autoregressive und dynamische Regressionsmodelle - Regressionsmodelle mit autokorrelierten und heteroskedastischen Fehlern - Modellierung von Trends und Saisonmuster - Einheitswurzeltests: Tests zum Überprüfen der Random Walk-Hypothese - Fehlerkorrekturmodelle, Kointegration (Schätzung und Tests) - Prognose und Prognoseintervalle - Anwenden der Verfahren mit R
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Nach Abschluss des Moduls können die Studierenden die wichtigsten ökonometrischen Werkzeuge der Zeitreihenanalyse und die zugrunde liegende ökonometrische Theorie benennen und aufzeigen, wie diese in der empirischen Analyse eingesetzt werden können. Darüber hinaus sind die Studierenden nach Abschluss des Moduls in der Lage, eigenständig die gelernten Verfahren anzuwenden, um damit ökonometrische Modelle an Zeitreihendaten anpassen und diese anwenden zu können. Die Übung hat dabei die Inhalte der Vorlesung mit selbst zu lösenden Aufgaben und Beispielen vertieft und den Studierenden ermöglicht, empirische Aufgaben mit ökonometrischer Software (R) zu lösen. Im Weiteren weisen die Studierenden während des Moduls die Fähigkeit nach, dass sie die für die Lösung von Übungsaufgaben erarbeitete methodische Vorgehensweise sowie die gewonnenen Ergebnisse auch mündlich vortragen und begründen können. Darüber hinaus weisen sie während des Moduls einmalig nach, dass sie bereits erlernte Verfahren schriftlich darstellen und damit einfache Probleme bearbeiten können.

5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	VWL-BSc-GL-M05 Einführung in die Ökonometrie
b) verpflichtende Nachweise:	keine
6. Verwendbarkeit des Moduls:	B.Sc. VWL (PO2021), Schwerpunktmodulgruppe "Data Science for Economics" B.Sc. Digital Business, Pflichtmodulgruppe "Data Analytics" B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls: 8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	Sommersemester, jährlich
9. Empfohlenes Fachsemester:	B.Sc. VWL, Digital Business: 4. Fachsemester B.Sc. Informatik: 6. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: Gesamt in Stunden: 180 (6 ECTS*30 Stunden) davon: 1. Präsenzzeit: 60 Std. (4 SWS) 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P/ WP / W	Lehrfo rm	Themenbereich/Thema	SWS/ Std.	LP	Studienleistungen
1	P	Vorles ung	Zeitreihenökonometrie	2	4	
2	P	Übung	Zeitreihenökonometrie	2	2	Vorrechnen von Übungsaufgaben

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.

13. Modulprüfung:

Kompetenz/Thema/B ereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
Zeitreihenökonometr ie	Klausur	Klausur 90 Minuten mündlich mindestens 10 und höchstens 45 Minuten	Prüfungszeitraum: erste bis vierte Woche nach Vorlesungsende	84\%
Zeitreihenökonometr ie	Zwischenk lausur	30 Minuten	Während der Vorlesungszeit	16\%

14. Bemerkungen:

Die Wiederholungsprüfung ist grundsätzlich nicht für Erstschreiber offen (Ausnahmen: Krankheit und Auslandsaufenthalt).

BWL-BSC-WM-M05 - Quantitative Methoden des digitalen Produktionsmanagements

1. Name des Moduls:	Quantitative Methoden des digitalen Produktionsmanagements
	Quantitative Methods in Digital Production Management
2. Fachgebiet / Verantwortlich:	Prof. Justus Arne Schwarz / Lehrstuhl für BWL, insb. Produktionsmanagement
3. Inhalte des Moduls:	Das Treffen von Entscheidungen hinsichtlich von Planungsproblemen in digitalisierten Produktionssystemen wird vielfach durch quantitative Methoden unterstützt. Neben der Lösungsgüte sind dabei, insbesondere be operativen Planungsproblemen, strenge Zeitvorgaben hinsichtlich der erforderlichen Rechenzeit einzuhalten. Die Veranstaltung gibt einen Überblick über verschiedene Planungsprobleme Produktionsmanagements. Für diese werden grundlegende Arten von Heuristiken und analytische Ansätze zur Lösung von linearen und nichtlinearen Optimierungsproblemen aufgezeigt. Insbesondere werden verschiedene Meta-Heuristiken vorgestellt.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Die Studierenden haben einen Überblick über verschiedene Arten heuristischer Lösungsverfahren für Optimierungsprobleme in digitalen Produktionssystemen. Nach Abschluss des Moduls können die Studierenden heuristische Verfahren in Bezug auf ihre Anwendbarkeit auf neue Problemstellungen bewerten, passende Heuristiken auswählen und falls erforderlich geeignet anpassen.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	BWL-BSc-PG-M01 Leistungserstellung
b) verpflichtende Nachweise:	BWL-BSc-PG-M03 Produktionsmanagement
6. Verwendbarkeit des Moduls:	B.Sc. BWL (PO2021), Schwerpunktmodulgruppe "Wertschöpfungsmanagement" B.Sc. Digital Business, Schwerpunktmodulgruppe "BWL 1: Wertschöpfungsmanagement"

				B.Sc. Info	matik (Nahlp	dul	
7. Angebotsturnus des Moduls:				Sommersemester, jährlich				
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:				1 Semester				
9. Empfohlenes Fachsemester:				B.Sc. BWL, Digital Business: 4. Fachsemester B.SC. Informatik: 6. Fachsemester				
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:				Arbeitsaufwand: Gesamt in Stunden: 180 (6 ECTS*30 Stunden) davon: 1. Präsenzzeit: 60 Std. (4 SWS) 2. Selbststudium (inkl. Prüfung): 120 Std. Leistungspunkte: 6				
11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.								
12. Modulbestandteile:								
Nr .	P/ WP/ W	Lehrform	Themenbereich	Thema	$\begin{gathered} \text { SWS / } \\ \text { Std. } \end{gathered}$	LP		leistungen
1	P	Vorlesung	Quantitative Me digitalen Produktionsman	oden des gements	2	4		
2	P	Übung	Quantitative Me digitalen Produktionsman	oden des gements	2	2		
Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.								
13. Modulprüfung:								
Kompetenz/Thema/Bereich			Art der Prüfung	Dauer		Zeitpunkt		Anteil an Modulnote
Quantitative Methoden des digitalen Produktionsmanagements			Klausur	90 Minuten		im re Prüfur		100\%
14. Bemerkungen:								

Fachgebiet: Rechtswissenschaft

DIGLAW06 - Private Digital Law

1. Name des Moduls:	Private Digital Law
	Private Digital Law
2. Fachgebiet / Verantwortlich:	Prof. Jörg Fritzsche/ Lehrstuhl für Bürgerliches Recht, Handels- und Wirtschaftsrecht Prof. Carsten Herresthal / Lehrstuhl für Bürgerliches Recht, Handels- und Gesellschaftsrecht, Europarecht und Rechtstheorie Prof. Frank Maschmann / Lehrstuhl für Bürgerliches Recht und Arbeitsrecht
3. Inhalte des Moduls:	- Intellectual Property Law: Grundlagen des Rechts des geis-tigen Eigentums mit Fokus auf dem Schutz von Leistungen im digitalen Umfeld. - Private Digital Law I: Verbraucher- und Wettbewerbsrecht mit konkretem Bezug zu Digital Law-Entwicklungen und den für sie geltenden rechtlichen Rahmenbedingungen; Persönlichkeitsschutz im Privatrecht mit NetzDGAspekten; IPR und IZVR-Aspekten. - Private Digital Law II: Schutz von Daten als Wirtschaftsgut bzw. Geschäftsgeheimnis; insb. Schutz von KI-Leistungen und KI-Daten; Lizenzierungsfragen; OSS und Crowd-Sourcing; haftungsrechtliche Probleme bei digitalen Ange-boten wie Legal Tech (Produkthaftung, Maschinenhaftung); Verträge über digitale Güter und Social Media- und ähnli-che Verträge (bis zum digitalen Nachlass); Internetvertrieb und Kartellrecht, Missbrauch von Marktmacht - Private Digital Law III: Digitales Vertragsrecht; rechtliche Aspekte neuer Finanzinstrumente und damit verbundener Geschäftsmodelle (FinTech); rechtliche Ausgestaltung der digitalen Arbeitswelt einschließlich Verfahren im Bereich von HR Analytics.
4. Qualifikationsziele des Moduls / zu erwerbende Kompetenzen:	Die Studierenden sind mit den Grundlagen des Vertragsund Haftungsrechts ebenso vertraut wie mit dem Schutz geistigen Eigentums und den Grenzen, die das Wettbewerbs- und Verbraucherschutzrecht digitalen Geschäftsmodellen ziehen.

	Sie können für existierende und zu entwi-ckelnde digitale Geschäftsmodelle (einschließlich Legal TechAnwendungen) bewerten, welche rechtlichen Probleme auftreten (z.B. Verletzung von Schutzrechten bzw. Geschäftsgeheimnissen Dritter) und inwieweit die rechtlichen Ausgestaltungen angemessen realisiert sind. Sie können für Geschäftsmodelle und geplante Anwendungen die rechtliche Ausgestaltung in den Bereichen Haftungsrecht, geistiges Eigentum, Wettbewerbsrecht und Datenschutz sowie Schutz von Geschäftsgeheimnissen selbst gestalten. Die Studierenden sind ferner mit Grundlagen und rechtlichen Rahmenbedingungen auf den Feldern des digitalen Vertragsrechts, Fin Tech und der digitalen Arbeitswelt vertraut. Sie kennen rechtliche Gestaltungsprobleme auf diesen Gebieten und können einschätzen, welche juristischen Fragen bei der praktischen Umsetzung zu lösen sind.
5. Teilnahmevoraussetzungen:	
a) empfohlene Kenntnisse:	Keine
b) verpflichtende Nachweise:	Keine
6. Verwendbarkeit des Moduls:	LLB Digital Law B.Sc. Informatik (Wahlpflichtmodul)
7. Angebotsturnus des Moduls:	Jährlich
8. Das Modul kann absolviert werden in/Vorgesehene Dauer des Moduls:	2 Semestern
9. Empfohlenes Fachsemester:	LLB Digital Law: 5. und 6. Fachsemester B.Sc. Informatik: 5. und 6. Fachsemester
10. Arbeitsaufwand des Moduls (Workload) / Anzahl Leistungspunkte:	Arbeitsaufwand: 400 Stunden davon: 1. Präsenzzeit: 120 Std. (8 SWS) 2. Selbststudium (inkl. Prüfungsvorbereitung und Prüfung): 280 Std. Leistungspunkte: 16

11. Das Modul ist erfolgreich absolviert, wenn die unten näher beschriebenen Leistungen erfüllt sind.
12. Modulbestandteile:

Nr.	P / WP / W	Lehrform	Themenbereich/Thema	SWS / Std.	LP	Studienleistungen
DIGL AW 06.1	P	Vorlesung	Intellectual Property Law	2	4	
DIGL AW 06.2	P	Vorlesung	Private Digital Law I	2	4	
DIGL AW 06.3	P	Vorlesung	Private Digital Law II	2	4	
DIGL AW 06.4	P	Vorlesung	Private Digital Law III	2	4	

Bemerkung: Die Angaben zu den Leistungspunkten dienen lediglich der rechnerischen Zuordnung der Lehrveranstaltung zum Gesamtaufwand des Moduls. Die LP für das Modul werden erst nach Abschluss des Moduls vergeben.
13. Modulprüfung:

KompetenzThema/Bereich	Art der Prüfung	Dauer	Zeitpunkt	Anteil an Modulnote
DIGLAW 06.1-06.4	mündliche Prüfung	$20-25$ Minuten	nach Abschluss des Moduls	100%

14. Bemerkungen:

[^0]: Das Modul wird in englischer Sprache angeboten. Die Prüfung ist in englischer Sprache zu absolvieren.

 Es wird empfohlen, die Modulbestandteile 1 und 2 im selben Semester zu absolvieren.

 Der jeweilige Prüfer oder die jeweilige Prüferin gibt die konkrete Prüfungsart spätestens sechs Wochen vor dem jeweiligen Prüfungstermin bekannt.

[^1]: Die Gesamtbearbeitungszeit beträgt höchstens ca. 20 Wochen, die Projektarbeit ist gegen Ende der Vorlesungszeit abzugeben.
 Der Gesamtumfang beträgt je nach Themenstellung zwischen 15 und 30 Seiten.

[^2]: im Wahlpflichtbereich angebotenen Lehrveranstaltungen/Modulen inhaltlich hinreichend andere zu wählen.

[^3]: Vormals "Quantitative Grundlagen der Wirtschaftsinformatik"; Kann nicht zusammen mit "Quantitative Grundlagen der Wirtschaftsinformatik" belegt werden;

