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Chapter 1

Introduction

Finite-state automata (FSA, [11]) are a well-researched model of computation and act as
acceptors of regular languages. FSA are generally pleasant to work with, as they are closed
under the Boolean operations of union, intersection and complementation and important
decision problems, such as universality, non-emptiness, membership and containment, are
all decidable ([11, chapters 4.2 and 4.3]).

However, since FSA only have a finite number of states and a finite transition relation
describing which letters permit transitions between which states, the use of FSA is limited
to regular languages over finite alphabets. In order to handle infinite alphabets, several
different modifications to finite-state automata have been proposed; each with their own
strengths and weaknesses.

Symbolic automata ([7]) are using logical formulas instead of letters in their transi-
tions. Algorithms on symbolic automata are often very similar to the ones for finite-state
automata, as they partition an infinite alphabet into a finite number of sets whose mem-
bers have equivalent properties within the automaton.

Variable automata ([10]) command a finite number of variables which can store input
letters, and compare those to upcoming letters for both equality and inequality. The vari-
ables cannot be reassigned. Variable automata and symbolic automata are incomparable,
as symbolic automata are incapable of comparing different letters of an input word while
variable automata do not evaluate letters using logical formulas.

This thesis is concerned with parametrized automata (PA, as introduced in [13, section
3]). PA combine the power of symbolic automata and variable automata: The transitions
are labeled with logical formulas, which may also contain (non-reassignable) parameters.
As such, PA subsume both symbolic automata and variable automata, but also inherit
some of their weaknesses.

Up to this point, to our knowledge there have been no works centered solely on PA.
Publications on the decision properties of sequence theories ([13]) and data words ([9])
have featured PA, but only examined properties of PA that were relevant to their respec-
tive research questions. The following work aims to be the first of its kind investigating
the general properties of PA, with special attention paid to the problem of complement-
ing PA. We will investigate the closure properties of PA regarding Boolean operations,
see how concepts such as ε-transitions, determinism and minimization translate to PA,
and determine whether some relevant decision problems such as the universality and non-
emptiness problems are decidable for PA. We will also identify useful subclasses of PA,
for example SDPA which have pleasant computational properties, CFPA which are easy
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to complement or strict PA which provide additional control over their parameters.
There are other classes of automata that share similarities with parametrized au-

tomata, or inhabit a similar niche. An overview can be found in section 2.3.4, which also
contextualizes parametrized automata in this larger ecosystem.

1.1 Motivating Example

We will motivate our work with a brief example: Dijkstra’s Self-Stabilizing Protocol, a
self-stabilization algorithm for distributed systems. This motivating example is mostly
relevant to readers already familiar with automata theory, as we will skip over a lot of
prerequisite knowledge. Those who are new to the subject are encouraged to skip ahead
to chapter 2 and revisit the example at a later point.

Example 1.1 (Dijkstra’s Self-Stabilizing Protocol [8]). Consider a ring of processes
1, . . . , n. Each process i is assigned a variable v(i) ∈ {0, 1, . . . , k − 1}, where k ≥ n.
We say that process 1 is privileged if v(1) = v(n), and process i ̸= 1 is privileged if
v(i) ̸= v(i− 1).

In Dijkstra’s Self-Stabilizing Protocol, in each step, a privileged process i is randomly
chosen and updated in the following way:

� If i = 1, then v(1) := v(1) + 1 (mod k).

� If i > 1, then v(i) := v(i− 1).

The remainder of processes remains unchanged.

“Self-stabilizing” means: After a sufficient number of steps, the system reaches a stable
state in which exactly one process is privileged. This is remarkable because each change
is performed based on local information, as each variable v(i) is only compared to v(i)−1
(mod k). While we will not prove the self-stabilizing property, we will model and prove a
partial result.

Claim 1.2. The set of all states in which exactly one processor is privileged forms an
invariant under Dijkstra’s Self-Stabilizing Protocol.

If exactly one process is privileged, and a step of the protocol is applied, there will still
be exactly one privileged process. The protocol does not “create” additional privileged
processes. In other words, once a stable state has been reached it cannot be left again.

If we want to formally prove this claim, we first need to formalize the problem.

As a first step, our system consists of n processes, each of which is assigned a variable
ranging from 0 to k − 1. Each possible state of the system can therefore be encoded by
a word of length n with letters from the alphabet {0, 1, . . . , k}. Assuming that n and
k are arbitrary numbers, we want to choose an approach that works for any n and any
k. Since we cannot put an upper bound on k, we desire a model of computation that
can handle infinite alphabets. In this particular case, the infinite alphabet should be the
set of natural numbers N. Examples of automata classes that are designed for infinite
alphabets are register automata, variable automata or symbolic automata.
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Another requirement results from the need to compare different letters of a word,
and apply functions and arithmetic operations to those letters. Register automata and
variable automata are capable of storing previous letters of a word and compare those to
upcoming letters, but are blind to the “structure” of the alphabet. Symbolic automata
function by checking whether the input letters satisfy logical formulae, but cannot store
or compare input letters. Parametrized automata come to the rescue, as they combine
the methods of variable automata and symbolic automata.

Let (v(1), v(2), . . . , v(n)) be a system state. Observe that, for n ≥ 2, the system will
always have at least one privileged process: If all variables v(i) are equal, then process 1
has to be privileged. If not, then there has to be some position i such that v(i) ̸= v(i−1).
We can therefore rephrase the protocol in the following way:

1. Randomly choose a position of (v(1), v(2), . . . , v(n)).

2. (a) If the chosen letter v(i) is the first letter and v(1) = v(n), update v(1) to
v(1)′ = v(1) + 1 mod k.

(b) If the chosen letter v(i) is not the first letter and v(i − 1) ̸= v(i), update v(i)
to v(i)′ = v(i− 1).

3. The remaining letters v(j), j ̸= i are set to v(j)′ = v(j).

4. If a letter has been updated in step 2, the protocol has been applied successfully.
Return the new word (v(1)′, v(2)′, . . . , v(n)′). Otherwise, abort.

The changes are subtle, yet point the way towards a possible approach. As it turns
out, parametrized automata and their extension, parametrized transducers, are sufficiently
expressive to model all of the intermediate steps outlined above. Transducers ([17]) will
only occur this one time and then never again, so we refrain from a lengthy introduction.
A transducer is an automaton that simultaneously generates an output word. In each
transition, a letter determined by the current state, input letter and specifications in the
transition label is appended to a new word that is returned at the end of an accepting run.
We only need this property to update and output the transformed input word. Related
concepts are Mealy machines ([15]), which need to be deterministic, and Moore machines
([3]), in which only the current state but not the current letter determine the output
symbol.

The manner in which a process is updated depends on its position, so we need to
differentiate between the first letter and the rest. This is no challenge for most automata
classes known, since it is only a matter of arranging the states properly. By not permitting
loops leading to the initial state, the transitions that can be taken by the first letter are
exactly the transitions that leave the initial state. This way, we can ensure that the
transformation specified in step 2. a) can only be applied the first letter, and step 2. b) is
never applied to the first letter.

We can differentiate between different positions in the word without a parameter,
and neither do we need a parameter to encode the length of the word n. However, the
maximum k − 1 should be encoded by a parameter. This way, the same automaton can
be used for different values of k. We also need a distinct parameter to store a letter, since
different letters of the input word need to be compared. If v(1) is chosen for updating,
v(1) has to be stored so the automaton can compare it to v(n) at the end and verify
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whether v(1) was privileged. If a different v(i) is chosen, v(i−1) needs to be stored, both
to overwrite the old v(i) and to confirm that v(i) and v(i− 1) are distinct.

As soon as the selected letter is updated and it is verified that the corresponding
process is privileged, the automaton enters an accepting state.

q0start q1 q2

q′1 q′2 q′3

x′ = x
[p = x]x′ = x

[⊤]

x′%k = x+ 1
[x = p]

x′ = x
[⊤]

x′ = x
[x = p]

x′ = x
[⊤]

x′ = x
[x = p]

x′ = p
[x ̸= p] x′ = x

[⊤]

Figure 1.1: A transducer T that applies a step of Dijkstra’s Self-Stabilizing Protocol to
an input ring of processes.

These considerations lead to the transducer T in figure 1.1. T takes an input word
(v(1), v(2), . . . , v(n)), where x denotes the current letter while p and k are variables, k
encoding the maximum number that can be assigned to a process. In each transition, the
letter x′ represents the output letter appended to the word (v(1)′, v(2)′, . . . , v(n)′) while
the input letter x has to satisfy the conditions in square brackets.

The state q1 is reached when the first process is randomly chosen to be updated, and
when variable p is randomly assigned the value v(1). In this case, v(1)′ is set to v(1) + 1
mod k. All other remaining processes remain unchanged. The transducer cannot verify
whether process 1 was actually privileged until the last transition, in which it confirms
that v(n) = v(1) = p.

If a different privileged process i ̸= 1 is chosen, the run will instead terminate in state
q′3. First, state q′2 is entered when p = v(i − 1). The next transition both verifies that
process i was privileged, and sets v(i) := v(i− 1) = p.

The output word (v(1)′, v(2)′, . . . , v(n)′) is a word to which a step of Dijkstra’s Self-
Stabilizing Protocol has been applied. We want to prove how, if the input word has
exactly one privileged process, the output word also does. For this purpose, the property
“The word has exactly one privileged process” should also be modeled. There are only
two possible configurations for this scenario:

� If process 1 is privileged, v(1) = v(2) = · · · = v(n) = m for some m ∈ {0, 1, . . . , k−
1}.

� If some process i ̸= 1 is privileged, then v(1) = v(2) = · · · = v(i − 1) = m and
v(i) = v(i+ 1) = · · · = v(n) = l for some m, l ∈ {0, 1, . . . , k − 1} where m ̸= l.

This, too, can be modeled using a parametrized automaton, seen in figure 1.2.
The automaton forces p = v(1) and can terminate in state q2 if process 1 is privileged.

Otherwise, if some process i ̸= 1 is privileged and the second variable p2 is randomly
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q0start

q1 q2

q3 q4

x = p

x = p

x = p

x = p

x = p

x = p2 ∧
p2 ̸= p

x = p2

Figure 1.2: A non-deterministic parametrized automaton P that witnesses whether the
input ring of processes has exactly one privileged process.

assigned the value v(i), the run will terminate in q4 if v(1) = v(2) = · · · = v(i − 1) =
p ̸= p2 = v(i) = v(i + 1) = · · · = v(n). The second variable is needed to ensure that no
more changes to the values occur, since this would mean there is more than one privileged
process.

Now that we have defined a transducer T applying a step of the protocol, and an
automaton P verifying that a sequence (v(1), . . . , v(n)) has exactly one privileged pro-
cess, we can express claim 1.2 in the following way: If (v(1), . . . , v(n)) is accepted by
P , and (v(1)′, . . . , v(n)′) is the word resulting from applying T to (v(1), . . . , v(n)), then
(v(1)′, . . . , v(n)′) is also accepted by P . Preferably, we turn this into a non-existence state-
ment: There is no word (v(1), . . . , v(n)) that is accepted by P and T where the output
word (v(1)′, . . . , v(n)′) is not accepted by P .

Here lies the problem, because in its current form, P is not suited to give information
on which words it does not accept. The automaton is non-deterministic and geared
towards acceptance. Both the parameters and several transitions in the automaton are
chosen non-deterministically, so a single run may not terminate in an accepting state for
a multitude of reasons that are hard to disentangle. We need to construct a complement
automaton P c that accepts exactly the words P does not accept.

One approach would be to repeat the procedure done for the construction of T and
P : Reason about which words P c should accept and then manually put together an
automaton fulfilling these properties.

� P c should accept the empty word.

� P c should accept all words of length 1.

� P c should accept no words of length 2, as words of length 2 always have exactly one
privileged process.

� P c should accept all words that have two or more privileged processes.
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q0start q1 q2 q3

q4

⊤

x = p1

x = p1
x = p2 ∧
p1 ̸= p2

x = p2

x ̸= p2

⊤

Figure 1.3: A complement automaton P c for the parametrized automaton in figure 1.2.

The last demand can seem tricky at first, because it looks like again cases where the
first process is privileged need to be differentiated from cases where it is not. However, if
the first process and some other process are privileged, therefore not being accepted by
P , then there automatically needs to be a third privileged process. As a consequence, an
automaton P c never needs to check if the first process is privileged. The automaton in
figure 1.3 should fulfill all of these properties, although no proof is supplied.

In conclusion, the chosen procedure is expedient, but tedious, and does not come with
a built-in way to verify whether P c works correctly. Maybe we can find a more general
method that works on every parametrized automaton, instead of having to hand-tailor
results?

This thesis is going to explore the quirks and challenges around the complementation
of parametrized automata in depth.

1.2 Contributions

Front and center in this thesis are parametrized automata, which up to this point have
mostly played a side role in investigating the decision properties of sequence theories
([13]) and the study of data words ([9]). Since our ultimate goal is to find methods for
complementing PA, contributions can be split into three focal points:

� This work aims to be a first port of call for readers who seek general information
on PA. Therefore, we provide a formal, generalized definition of PA and study a
number of important properties. Most important for the subsequent chapters is the
observation that PA are not closed under complementation, and that the problem
of either complementing an arbitrary PA, or returning that a complement does not
exist, is undecidable. Regarding other Boolean operations on PA, we will provide
algorithmic proof that PA are closed under intersection and union. We will also
study classical decision problems and prove that the non-emptiness and reachability
problems are decidable for PA while the universality, equivalence and containment
problems are not. We will also investigate how established operations on related
models of computation, such as ε-elimination, determinization, minimization and
product constructions, translate to PA.
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� We introduce strongly deterministic PA (SDPA), an approach inspired by the com-
plementation algorithms on deterministic finite-state and symbolic automata. SDPA
are a fragment of PA that is closed under all Boolean operations, is easy to com-
plement and for which the universality, equivalence and containment problems are
decidable. However, not every PA is equivalent to an SDPA, and the problem of
determinizing a given PA is undecidable, limiting the worth of SDPA.

� The main contribution of this paper is the introduction of PA in complementable nor-
mal form (CFPA). CFPA have all the advantages of SDPA (closure under Boolean
operations and decidability of universality, containment and equivalence problems)
while encompassing a much wider range of PA: Not every complementable PA can
be transformed into an SDPA, but it can always be transformed into a CFPA. We
provide a promising method for constructing CFPA.

1.3 Outline

In order to prepare every reader for the more specific concepts encountered in this the-
sis while also establishing naming conventions and highlighting important definitions,
chapter 2 will begin with a brief review of formal languages and first-order logic. Sec-
tion 2.2 will formally define finite-state automata (FSA) and explain complementation
in automata, highlighting important properties while not digging too deeply. Many of
the concepts encountered in FSA will also be relevant to PA, so the section serves to
both introduce these concepts and provide a reference point contextualizing the differ-
ence between finite-state automata and parametrized automata. Then in section 2.3, we
will introduce multiple classes of automata for languages over infinite alphabets. Since
variable automata and symbolic automata, both of which we will encounter, are related
to parametrized automata, this section will prime the reader for some of the challenges
we will face later.

Using the groundwork from chapter 2, chapter 3 formally defines parametrized au-
tomata. We will see very quickly that PA cannot always be complemented, and establish
a few useful operations and properties in section 3.2. Section 3.3 contains algorithms
for the computation of the union and intersection of PA, as well as proof that either of
these always exist. In section 3.4, we will also see that the subclass of PA that are com-
plementable is closed under the operations of union, intersection, complementation and
reversal. Section 3.5 touches on the decision problems of universality, equivalence and
containment (all undecidable for PA) as well as non-emptiness and reachability of states
(which are decidable).

In search for a subclass of PA that is easier to complement, we introduce a notion
of strong determinism in chapter 4. In section 4.1, we will see that strongly determin-
istic PA, called SDPA, have nice closure properties and can be complemented reliably
and efficiently. All of the decision problems we previously considered are decidable when
restricted to SDPA. Unfortunately, as shown in section 4.2, not every PA can be trans-
formed into an SDPA, it is hard to transform a given PA into an equivalent SDPA, and
even more damning, we may not even be able to verify whether a given PA is strongly
deterministic.

Chapter 5 provides a brief excursion on the properties of the parameter assignment.
While interesting, the chapter can be safely skipped without
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Therefore, chapter 6 introduces another subclass of PA: CFPA, or parametrized au-
tomata in complementable normal form. In sections 6.1 and 6.2, plenty of consideration
is given to the existence and construction of CFPA. The union, intersection and comple-
ment of CFPA can be computed efficiently, and their behavior in decision problems is
similar to that of SDPA. Moreover, every complementable PA can be transformed into
complementable normal form. Appendix A touches on minimization of PA, while not
contributing greatly to the other ideas in this thesis.
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Chapter 2

Preliminaries

2.1 Fundamentals

2.1.1 Formal Languages

This chapter will cover the prerequisite knowledge needed to comprehend parametrized
automata, beginning with a bare-bones introduction to formal languages. If the reader
is already familiar with formal languages, this section can be skipped entirely. If the
reader wants to get even better acquainted with formal languages, a more exhaustive
introduction can be found in [11, chapter 1.5].

Definition 2.1 (alphabets, words, [11, section 1.5.1 and 1.5.2]). In the context of com-
puter science, an alphabet is a non-empty set that may contain a finite or infinite number
of elements. The elements of the set are called letters. A word (over an alphabet D) is
any string or finite sequence of letters (from D). The length of a word refers to its number
of letters. A word can have a length of 0: The empty word is often denoted ε.

Example 2.2.

1. D1 = {a, b, c} is an alphabet. Examples of words over this alphabet are aaa, ε and
abacbacb.

2. D2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is an alphabet. Examples of words over this alphabet
are 1, 42 or 100000. In the context of formal languages, these words do not carry
any mathematical meaning: They look like numbers, because humans tend to use
these symbols to represent numbers.

3. Z, the set of integers, is an infinite alphabet. Some letters of this alphabet are 42,
100000 or −5. Examples of words over this alphabet are 642220, 642220 or −100.
Since the definition of alphabets as non-empty sets permits letters to be strings
of symbols themselves, the notation used so far has been highly ambiguous. The
words 642220 (consisting of the letters 64, 222 and 0) and 642220 (consisting of the
letters 64 and 2220) are distinct, but there is no way to tell. For situations like this
we can introduce an alternative notation: Any word w = w1w2 . . . wk can also be
denoted as w = (w1, w2, . . . , wk). The above words can then be written (64, 222, 0),
(64, 2220) and (−1, 0, 0), resolving the ambiguity.
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Definition 2.3 (formal languages, [11, section 1.5.3]). For an alphabet D, let D∗ be the
set of all words over D. A formal language over D is any subset L ⊆ D∗ of words over D.

Technically, the ∗ in D∗ is an operator called the Kleene star which will be discussed
in a little while. We also call D∗ the universal language. Note that the universal language
is always defined in relation to a base alphabet D.

Example 2.4.

1. Let D be any alphabet. The sets {ε}, D and D∗ are formal languages over D.

2. {aac, bcbcbb, cccab, ε} is a formal language over D1 = {a, b, c}.

3. A formal language over D2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is L = {w ∈ D∗
2 | w = 0 or

the first letter of w is not 0 and the last letter of w is 0, 2, 4, 6 or 8}. Intuitively, the
set contains all representations of “even numbers”.

Since formal languages are nothing but sets, the union, intersection and complement
of formal languages can be constructed.

Definition 2.5 (Boolean and some non-Boolean operations on languages, [11, section
3.1.1]). Let L1, L2 ⊆ D∗ be two formal languages. We define

� the union L1 ∪ L2 = {w ∈ D∗ | w ∈ L1 ∨ w ∈ L2},

� the intersection L1 ∩ L2 = {w ∈ D∗ | w ∈ L1 ∧ w ∈ L2},

� the complement Lc1 = {w ∈ D∗ | w /∈ L1} = D∗ \ L1,

� the concatenation L1L2 = {uv ∈ D∗ | u ∈ L1, v ∈ L2}, where uv = (u1, u2, . . . , un,
v1, v2, . . . , vk) is the concatenation of the words u = (u1, u2, . . . , un) and v = (v1, v2,
. . . , vk),

� Lk1 = {w1w2 . . . wk ∈ D∗ | wi ∈ L1 for all i = 1, . . . , k}, which denotes the concate-
nation of a language with itself exactly k times,

� and the (Kleene) closure L∗
1 =

⋃∞
i=0 L

i
1.

Example 2.6. Let D = {a, b}, L1 = {a, aa, aaa} and L2 = {ε, a, b, aa, ab, ba, bb}. Then

� L1 ∪ L2 = {ε, a, b, aa, ab, ba, bb, aaa},

� L1 ∩ L2 = {a, aa},

� Lc2 = {aaa, aab, aba, . . . , bbb, aaaa, . . . }, containing all words of a length greater than
3,

� L1L2 = {a, aa, ab, aaa, aab, aba, abb, aaaa, aaab, aaba, aabb, aaaaa, aaaab, aaaba,
aaabb},

� L0
1 = {ε}, L1

1 = L1, L
2
1 = {aa, aaa, aaaa, aaaaa, aaaaaa},

� L∗
1 = {ε, a, aa, aaa, . . . }.
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There is a subclass of formal languages, the so-called regular languages, which is of
special interest to us. Regular languages can be described using a kind of notation called
regular expressions.

Definition 2.7 (regular expressions, [11, section 3.1.2]). Let D be a finite alphabet.
Regular expressions over D can be defined inductively:

� ε is a regular expressions, denoting the language L(ε) = {ε} (base case).

� ∅ is a regular expression, denoting the language L(∅) = {} (base case).

� Any letter a ∈ D is a regular expression, denoting the language L(a) = {a} (base
case).

� If E1 and E2 are regular expressions, then E1 +E2 is a regular expression, denoting
the language L(E1 + E2) = L(E1) ∪ L(E2).

� If E1 and E2 are regular expressions, then E1E2 is a regular expression, denoting
the language L(E1E2) = L(E1)L(E2).

� If E is a regular expression, then E∗ is a regular expression, denoting the language
L(E∗) = L(E)∗.

� Parentheses: If E is a regular expression, then (E) is a regular expression, denoting
the language L((E)) = L(E).

The languages defined by regular expressions are called regular languages.
We introduce some additional notation in order to improve the legibility of regular

expressions. For a regular expression E, let Ek denote the regular expression EE . . . E (k
times, of course), such that L(Ek) = L(E)k. Also, we permit the use of variable symbols
representing sets of letters or words. Careful: If the represented set is not a regular
language, the resulting regular expression may also not correspond to a regular language.

Example 2.8. Consider once more D2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and the language L =
{w ∈ D∗

2 | w = 0 or the first letter of w is not 0 and the last letter of w is 0, 2, 4, 6 or
8}. We now have the tools to denote L with a regular expression. A regular expression
representing L could be 0 + 2 + 4 + 6 + 8 + (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)D∗

2(0 + 2 +
4 + 6 + 8). In this example, we have used D2 as a variable symbol to represent the set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. L is therefore a regular language.

Although it will not be proven in the scope of this thesis, regular languages are closed
under the Boolean operations of intersection, union and complementation [11, section
4.2.1].

2.1.2 First-Order Logic

This section will briefly introduce first-order logic, roughly following the introduction to
first-order logic given in [1, section 2.1].

The reader should be familiar with expressions such as “2 < 1” or “5+x = 5 → x = 0”,
using the integers Z. We will keep using this example to explain the different concepts
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introduced in this section, and ultimately show how these expressions are defined rigor-
ously in first-order logic.

In order to define logical formulas, we first need to define signatures. A signature
clarifies which symbols are used as predicates, functions and variables, and also assigns
each function or predicate symbol an arity. Intuitively, the arity defines the number of
“input parameters” for each function and predicate.

Definition 2.9 (signature, [1, section 2.1]). A signature is a tuple Σ = (Σp,Σf ,ΣY , σ)
where

� Σp is a set of predicate symbols,

� Σf is the set of function symbols,

� ΣY is an infinite set of variables,

� and σ : Σp ∪ Σf → N is a function mapping the predicate and function symbols to
their arity.

The sets Σp, Σf and ΣY are pairwise disjoint.

Some definitions also introduce a set Σc of constants. We will instead consider con-
stants to be functions with an arity of 0 (or 0-ary functions).

Example 2.10. The x in “5+x” is a variable; a placeholder for some integer that can be
plugged in later. The number of variables is infinite to ensure there are enough of them
for arbitrarily long expressions, and for relabeling variables if necessary.

The + in “5+x” is a 2-ary function symbol, and the < in “2 < 1” is a 2-ary predicate
symbol. The difference between functions and predicates will be explained in a minute.
Commonly, functions and predicates use prefix notation: A 2-ary function f applied to
two inputs a and b is represented f(a, b). Integers use infix notation, where the function
or predicate symbol is written between its inputs. Therefore, in this example, we skip
over the less familiar prefix notation (“+(5, x)”, “< (2, 1)”) entirely. Additionally, we use
≈ instead of = to denote the equality relation in order to avoid ambiguity.

The symbols 1, 2 and 5 are constants.
A theory of integers (theories will be defined in two minutes) could therefore have the

signature ΣZ = (ΣZ
p ,Σ

Z
f ,Σ

Z
Y , σ

Z), where

� ΣZ
p = {≈, <},

� ΣZ
f = {. . . ,−2,−1, 0, 1, 2, . . . ,+,−, ·},

� ΣZ
Y = {x, y, z, . . . }.

The arity of constant functions, such as −1, is σZ(−1) = 0. The arity of all other function
and predicate symbols (i. e., ≈, <, +, − and ·) is σZ(≈) = 2.

Now that predicate and function symbols have been established, we can define how to
combine those into terms and formulae:
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Definition 2.11 (terms, formulae, [1, section 2.1]). Terms can be defined inductively as
either:

� a variable,

� or an n-ary function taking n terms as arguments.

A formula is defined as one of the following:

� an n-ary predicate applied to n terms, where 0-ary predicates represent propositional
variables,

� the application of a logical connective ¬, ∧, ∨, → or ↔ to a formula or formulae,

� the truth symbols ⊤ and ⊥,

� or the application of a quantifier ∀ or ∃ to a variable and a formula (we don’t really
need to care about quantifiers in this context).

Example 2.12. In the context of integers, a term is therefore “something that represents
an integer” and a formula is “something that can be true or false”. Applying a function
to a term or terms results in another term, while applying a predicate to a term or terms
results in a formula.

Consider the expression “5 + x ≈ 5 → x ≈ 0”. It is a formula, constructed by
applying the logical connective “→” to the formulae “5 + x ≈ 5” and “x ≈ 0”. The
formula “5 + x ≈ 5” is constructed by applying the 2-ary predicate “≈” to the terms
“5 + x” and “5”. The term “5 + x” is constructed by applying the 2-ary function “+” to
the terms “5” and “x”.

All “formulae that occur in the construction of a formula” are called subformulae.
More rigorously:

Definition 2.13 (subformulae, [1, section 2.1]). Let φ and ψ be formulae.

� The only subformula of ⊤, ⊥ or p(t1, . . . , tn), an n-ary predicate applied to n terms,
is the formula itself.

� The subformulae of ¬φ are ¬φ and the subformulae of φ.

� The subformulae of φ ∧ ψ, φ ∨ ψ, φ → ψ or φ ↔ ψ are the formula itself, the
subformulae of φ and the subformulae of ψ.

We denote φ ≡ ψ if the formulae φ and ψ are identical.

This concludes the discussion of the syntax of first-order logic. We are now capable of
constructing well-formed formulae. Next, we turn to the semantics, or interpretation of
these formulae.

Definition 2.14 (structure, interpretation, variable assignment, [1, section 2.2]). Let
there be a signature Σ = (Σp,Σf ,ΣY , σ). A structure M = (D, I) is a tuple consisting of
a nonempty set (also called domain) D and an interpretation I. The elements of D are
called values. The interpretation I maps each predicate p in Σp to a relation I(p) ⊆ Dσ(p)

and each function f in Σf to a function I(f) : Dσ(f) → D.
A variable assignment is a function µ : ΣY → D that maps the variables to concrete

values in D. The variable assignment is independent from the interpretation I.

15



Example 2.15. Continuing the integer example, let ΣZ be the signature from exam-
ple 2.10. For the domain, we naturally choose Z. The interpretation of the predicate “<”,
for example, maps the symbol “<” to the <-relation as we know it: I(<) = {(a, b) ∈ Z |
a < b}. The relation I(<) contains all tuples (a, b) for which we wish a < b to hold, such
as (1, 4) but not (2, 2) or (0,−5).

The interpretation of a function symbol, for example +, is a function I(+) : Z×Z → Z
that maps two integers to their sum (e. g., I(+)(1, 3) = 4). We consider constants, such
as 0, to be 0-ary functions: I(0) is a function that does not take any input parameters
and maps to 0 ∈ Z.

Now, all the previously defined symbols have been assigned a meaning. The final step
is to define the evaluation function, which determines whether a formula is true or false.

Definition 2.16 (evaluation of terms and formulae, [1, section 2.1]). Let M = (D, I)
be a structure and µ : ΣY → D be a variable assignment. The evaluation function vM,µ

evaluates terms and formulae in the following manner:

� Variables are mapped according to the variable assignment: For a variable x,
vM,µ(x) = µ(x).

� Terms are mapped according to the interpretation function: vM,µ(f(t1, . . . , tn)) =
I(f)(vM,µ(t1), . . . , vM,µ(tn)) for a term f(t1, . . . , tn) consisting of a function f and n
terms t1, . . . , tn.

� vM,µ(⊤) = true, vM,µ(⊥) = false.

� The evaluation of a formula p(t1, . . . , tn) consisting of an n-ary predicate p and n
terms t1, . . . , tn is also defined by the interpretation function: The relation I(p)
contains exactly the tuples of values for which we wish p(t1, . . . , tn) to be evaluated
to true. Therefore, vM,µ(p(t1, . . . , tn)) = true if and only if (vM,µ(t1), . . . , vM,µ(tn)) ∈
I(p) (false otherwise).

� For formulae φ and ψ,

– vM,µ(¬φ) = true if and only if vM,µ(φ) = false,

– vM,µ(φ ∨ ψ) = true if and only if vM,µ(φ) = true or vM,µ(ψ) = true,

– vM,µ(φ ∧ ψ) = true if and only if vM,µ(φ) = true and vM,µ(ψ) = true,

– vM,µ(φ→ ψ) = true if and only if vM,µ(φ) = false or vM,µ(ψ) = true,

– vM,µ(φ ↔ ψ) = true if and only if either vM,µ(φ) = true and vM,µ(ψ) = true
hold, or vM,µ(φ) = false and vM,µ(ψ) = false hold.

Example 2.17. Consider the formula 4 + x < 0 and a variable assignment µ : ΣZ
Y → Z

that maps x to −5 ∈ Z. Then

� vM,µ(x) = −5, vM,µ(4) = 4, vM,µ(0) = 0,

� vM,µ(4 + x) = I(+)(vM,µ(4), vM,µ(x)) = I(+)(4,−5) = −1, and

� vM,µ(4 + x < 0) = true because (vM,µ(4 + x), vM,µ(0)) = (−1, 0) ∈ I(<).
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At this point, the integer example is de facto “complete”. We have defined a signature
and explained how to build syntactically correct formulae. Then, the introduction of a
structure and evaluation function allowed us to assign the formulae a meaning.

If wishing to reason about data structures or algebras using first-order logic, these
structures are usually formalized using first-order theories.

Definition 2.18 (theory, [1, section 3.1]). A theory T = (Σ, S) consists of a signature
Σ and a class of structures S. Alternatively, a theory can be defined by a signature Σ
alongside a set of axioms.

Finally, we introduce the language needed to express the properties of a formula in
the context of a theory.

Definition 2.19 (satisfiability, [1, section 3.1]). Let T = (Σ, S) be a theory. A formula
φ is

� satisfiable in the theory T , or T -satisfiable, if there is a structure M ∈ S and a
variable assignment µ such that vM,µ(φ) = true (the formula can evaluate to true),

� T -valid if vM,µ(φ) = true holds for every structure M ∈ S and variable assignment
µ (the formula will always evaluate to true),

� T-unsatisfiable if it is not T-satisfiable (the formula will always evaluate to false),

� counter-T-satisfiable or T-invalid if it is not T-valid (the formula can evaluate to
false),

� or T-contingent if it is both T-satisfiable and counter-T-satisfiable (the formula can
evaluate to both true and false).

A theory is decidable if there exists an algorithm that terminates for every T -formula with
yes if the formula is T -valid and no if it is not.

2.2 Finite-State Automata

q0start q1 q2 q3
a, b a, b a

(a) An automaton for L1 ∪ L2.

q0start

a

(b) An automaton for L∗
1.

Figure 2.1: Examples of finite-state automata representing languages from example 2.6.

We have previously encountered regular expressions as a way to define regular lan-
guages. Another common device to identify and define regular languages are finite-state
automata ([11, chapter 3.2]). For a visual approach, finite-state automata can be pictured
as directed graphs in which the vertices are called states and the directed edges transitions.
One state is marked as the initial state, and some states are marked as “accepting”. The
transitions are labeled with letters from the finite alphabet. This way, each path from the
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initial state to an accepting state spells out a word when noting, in order, the letters that
label the traversed transitions. The language of an automaton is defined as the set of all
words that can be constructed in such a manner. In particular, this language is regular.
As such, each finite-state automaton corresponds to exactly one regular language, which
is the set of words that define paths leading to accepting states.

This informal, intuitive description will now be formalized:

Definition 2.20 (finite-state automata). A finite-state automaton (FSA) is a tuple A =
(Σ, Q, q0, δ, F ) consisting of

� a finite alphabet Σ,

� a finite set of states Q,

� an initial state q0 ∈ Q,

� a transition relation δ ⊆ Q× (Σ∪{ε})×Q, where ε /∈ Σ represents the empty word,
and

� a finite set F ⊆ Q of accepting states.

The word w is accepted by the FSA A if it has an accepting run in A. The set of all
words accepted by A is a formal language, denoted L(A).

The definition of a run will follow shortly. First, we should think a little more about
automata, and try to shift our understanding towards automata as acceptors of regular
languages.

An FSA can be thought of as a machine that corresponds to exactly one language.
The FSA takes a word as input, and then either rejects or accepts the word as part of
its language. The machine’s decision making process can be divided into steps. In each
step, the leftmost letter from the input word is consumed. The automaton then enters
a new state (which may coincide with the previous state), dictated by the letter, the
current state and the transition relation. If the automaton is in an accepting state after
consuming the last letter of a word, the word is accepted.

In some steps, the current letter and state permit more than one successor state. Such
automata are called non-deterministic, and in line with definition 2.20, a word is accepted
if at least one possible sequence of transitions terminates in an accepting state. It does
not matter if different choices of transitions lead to a termination in a non-accepting state.

Likewise, there may be combinations of letters and states such that no successor state
exists. In this case, the automaton cannot terminate in an accepting state because the
input word has not been consumed entirely.

All of these notions will now be formalized in the following definition.

Definition 2.21. A run (or complete run) of a word w ∈ Σ∗ in an FSA A is a sequence of
states q0, q1, . . . , qn and transitions (q0, w1, q1), (q1, w2, q2), . . . , (qn−1, wn, qn) such that q0
is the initial state and, when removing all wi where wi = ε, w1w2 . . . wn = w (sometimes,
we also call this the path of w through A). A run is accepting if its final state qn is an
accepting state. The length of the run is n.

This definition permits some of the letters wi to correspond to ε. A transition
(qi−1, ε, qi) is called an ε-transitions. No letter of the input word is consumed when
using an ε-transition.
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Let w1w2 . . . wk be a strict prefix of w, meaning that there is a nonempty word
u1u2 . . . um ∈ Σ∗ such that w1w2 . . . wku1u2 . . . um = w. Then a complete run of w1 . . . wk
is called an incomplete run of w.

Now let w = w1 . . . wn be a word, let (q0, w1, q1), (q1, w2, q2), . . . , (qk−1, wk, qk) be a
complete run of the strict prefix w1 . . . wk and let wk+1 ∈ Σ be the “next” letter of w,
such that w1 . . . wkwk+1 is a prefix of w. Let qk+1 be a state. A transition (qk, u, qk+1)
exiting the current state qk is viable if u = ε or u = wk+1. If no exiting transition is
viable, we say that the run dies at state qk.

FSA originated in the 1940’s ([19]), and are thus well-researched. Analogue to regular
languages, FSA are closed under Boolean operations: Given two FSA A and B, it is
possible to construct FSA accepting the union L(A) ∪ L(B), intersection L(A) ∩ L(B),
and complement L(A)c = Σ∗ \L(A). We will only touch on the complementation problem
in more detail, as it will prime us for the challenges tied to complementation of other
types of automata.

In relation to complementation of FSA, determinism is an important concept: In a
deterministic FSA, every word completes exactly one run. Deterministic FSA are easy to
complement, because every word which completes a run in a non-accepting state has to
be part of the complement.

Definition 2.22 (determinism of finite-state automata [11, section 2.2.1]). A FSA is
deterministic if there is exactly one possible complete run for each word w ∈ Σ∗. This
criterion is met if and only if for every letter a ∈ Σ and every state q ∈ Q, there is exactly
one state p ∈ Q such that (q, a, p) ∈ δ.

Not every FSA is deterministic, but every FSA can be transformed into an equivalent
FSA that is deterministic.

Theorem 2.23 (determinization of FSA). For every FSA A, there is an equivalent FSA
A′ that is deterministic. Two automata A and A′ are equivalent if L(A) = L(A′).

Proof. A detailed version of this proof can be found in [11, section 2.3.5].
An FSA can be determinized using a subset construction: A new automaton is created,

whose states correspond to subsets of states of the original automaton. A transition
(S, a, T ) between two set-states S and T exists if T consists of all states that can be
reached from states in S via a sequence of transitions containing exactly one a-transition
and an arbitrary number of ε-transitions.

Starting with an FSA A = (Σ, Q, q0, δ, F ), let P (Q) be the power set of Q. Let
δd ⊆ P (Q)× Σ× P (Q) consist of all tuples (S, a, T ) such that T = {p ∈ Q : (q, a, p) ∈ δ
for some q ∈ S}. Let qd = {q0}, and let Fd = {S ∈ P (Q) : S ∩ F ̸= ∅} be the set of all
subsets of Q that contain at least one accepting state.

The resulting FSA A′ = (Σ, P (Q), qd, δd, Fd) is obviously deterministic and equivalent
to A. The latter can be shown by an induction proof.

Combining the previous observations, an algorithm for complementing arbitrary PA
can be constructed.

Theorem 2.24 (complementation of FSA [11, section 4.2.1]). Finite-state automata are
closed under complementation. Given an FSA A, an FSA Ac such that L(Ac) = L(A)c

always exists and can be constructed. We say that Ac is the complement automaton of
A.
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Proof. Let A′ = (Σ, Q, q0, δ, F ) be a deterministic FSA equivalent to A, which exists
according to theorem 2.23. Then the automaton Ac = (Σ, Q, q0, δ, Q \ F ), obtained by
“swapping” all states of A′ such that the accepting states become non-accepting and vice
versa, identifies the complement of A′ and therefore of A.

Since each word w only completes one run through A′, w ∈ L(A′)c if and only if its
unique run terminates in a non-accepting state of A′. Similarly, if the run of w terminates
in an accepting state of A′, it cannot be part of the complement of L(A′).

q0start q1

a, b

b

(a) An automaton for L1.

q0start q1

a

b

b
a

(b) A deterministic automa-
ton for L1.

q0start q1

a

b

b
a

(c) An automaton for the
complement of L1.

Figure 2.2: Examples of finite-state automata, where the language L1 contains all words
ending in the letter b.

Example 2.25. Let Σ = {a, b} and L1 = {w ∈ Σ∗ : the last letter of w is b}. Figure 2.2
displays non-deterministic and deterministic FSA identifying L1, and an FSA identifying
Lc1.

Finally, we give a short introduction to a number of classical decision problems in
automata theory.

Definition 2.26 (decision problems, [21, chapter 3.1, definition 3.6], [1, section 2.6.2]). In
computer science, a decision problem is a yes-or-no-question. It is commonly represented
as a base set S and a subset P ⊆ S of positive cases. A decision problem is decidable
if there exists an algorithm that halts on any input s ∈ S and returns “yes” if and only
if s ∈ P , and “no” otherwise. A decision problem is semidecidable if there exists an
algorithm that takes any element s ∈ S as input and returns “yes” if and only if s ∈ P ,
and does not terminate otherwise.

Example 2.27. Some decision problems are of special interest in automata theory. To
investigate the expressiveness of an automata class, such as deterministic finite automata
or non-deterministic finite automata, we often consider their “difficulty” regarding the
following decision problems:

� Universality: The universality problem is the problem of deciding whether an au-
tomaton’s language is universal. The problem is decidable if there exists an algo-
rithm that takes any automaton A over an alphabet D as input, always terminates
and returns ”yes” if L(A) = D∗ and ”no” if there exists a word that does not
complete an accepting run in A.

� Non-Emptiness: The non-emptiness problem is the problem of deciding whether the
language of an automaton A is not the empty language, i. e. whether there exists
some w ∈ D∗ such that w ∈ L(A).
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� Equivalence: The equivalence problem is the problem of deciding whether two au-
tomata A and B identify the same language, L(A) = L(B).

� Containment: The containment problem is the problem of deciding whether the
language of an automaton A is a subset of the language of an automaton B, L(A) ⊆
L(B).

� Membership: The membership problem is the problem of deciding whether a word
w is accepted by an automaton A. An algorithm deciding the membership problem
therefore takes an automaton A and a word w as input, and returns ”yes” if w ∈
L(A).

� Reachability: The reachability problem is the problem of deciding whether a state
of an automaton is reachable. An algorithm deciding the reachability problem takes
an automaton A and a state q of A as input, and returns ”yes” if there exists a word
that has a run terminating in q.

When a problem is said to be “decidable for deterministic FSA”, this refers to deter-
ministic FSA being the base set of the problem. An algorithm deciding the problem can
therefore assume all input FSA to be deterministic.

A related question, which is also of interest to us, refers to a problem’s computational
complexity (see [1, section 2.6.3]. If a problem is decidable, how quickly can it be solved by
an algorithm? The complexity classes most important to us are P (solvable in polynomial
time), NP (solvable non-deterministically in polynomial time) and PSPACE (solvable in
polynomial space).

Theorem 2.28. The following statements hold:

� The non-emptiness, reachability, and membership problems are in P for both deter-
ministic and non-deterministic FSA ([11, chapter 4.3]).

� The universality, equivalence and containment problems are in P for deterministic
FSA (since non-emptiness and reachability are in P), and PSPACE-complete for
non-deterministic FSA ([16]).

2.3 Automata for Infinite Alphabets

FSA, as introduced before, are by construction only capable of identifying finite words
based on finite alphabets. In order to extend this model to finite words from infinite
alphabets, the scientific community has come up with a multitude of modifications to
FSA. We will describe three of these classes of automata in more detail.

The first will be register automata which, as one of the oldest attempts to extend finite-
state automata to infinite alphabets, have an enormous historical significance. If FSA are
a distant ancestor of parametrized automata, register automata are their uncle. We will
also meet the parents: Variable automata and symbolic automata, two very different
classes of automata which are both extended by parametrized automata.
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2.3.1 Register Automata

Initially introduced as “finite memory automata” (see [14]), register automata are one
of the oldest models designed to handle languages over infinite alphabets, and nowadays
exist in plenty of variations. One such variation, symbolic register automata, will be briefly
described at the end of the chapter. For now, we will stick to the original version.

Definition 2.29 (register automata, [14, chapter 2, definition 1]). Let D be an infinite
alphabet. A register automaton (RA) is a tuple A = (Q, q0, u, ρ, δ, F ) of

� a finite, non-empty set of states Q,

� an initial state q0,

� an initial assignment u = w0
1w

0
2 . . . w

0
r ∈ (D∪{c})r, where c is a letter not occurring

in Σ and r is the “storage size”,

� a (partial) reassignment function ρ : Q→ {1, 2, . . . , r},

� a transition relation δ ⊆ Q× {1, 2, . . . , r} ×Q and

� a set F ⊆ Q of final states.

The transitions of register automata are not labeled with letters, but with positions in
the register. Starting at a state q with a current letter a, a transition (q, k, p) ∈ δ is viable
in either of these cases:

� The current letter a corresponds to the k-th entry of the register, a = wk. If chosing
the transition, no adjustments need to be made to the register.

� The current letter a does not equal any other entry in the register, and ρ(q) = k. If
the transition is chosen, the register entry wk has to be overwritten with a.

In either case, the k-th entry of the register will store the letter a after the transition.
A word is accepted by the register automaton if it completes a run in this manner in an
accepting state.

Since the reassignment function ρ is static, we can improve the comprehensibility of
the depictions of register automata below by adding the label ρ(q) to each state q.

Example 2.30. Let R = ({q0, q1, q2}, q0, (c, c), ρ, δ, {q2}) be the automaton in figure 2.3a,
where D is an infinite alphabet not containing the letter c from the initial assignment,
and ρ(q0) = 1, ρ(q1) = ρ(q2) = 2. Two transitions start in the initial state, both of which
compare the upcoming letters to the first entry of the register, u(1). Since the second
entry of the register, u(2), is still assigned c, every upcoming letter can be read and then
stored in the first entry. The choice to stay in q0, or else take the transition leading to
state q1, is non-deterministic.

If state q1 is entered upon some letter a, the letter a will be stored in the first entry of
the register indefinitely, since ρ(q1) = 2 and upcoming letters will be stored in the second
entry of the register. Now, if an upcoming letter does not equal a, it will be stored in the
second entry of the register and the run remains in state q1. If an upcoming letter equals
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a, the transition leading to the accepting state q2 has to be taken. In q2, both the letter
a and any letter that does not equal a will cause the run to loop back to q2.

The automaton accepts a word if some letter appears twice and if the run happens to
leave state q0 while said letter is stored. Runs of words that do not contain any repeat
letters will not be able to exit state q1.

q0, 1start q1, 2 q2, 2

1

1

2

1

1, 2

(a) A register automaton identifying all
words in which some letter appears at least
twice.

q0, 1start q1

1

1

(b) A register automaton identifying words
in which each letter appears in a pair.

Figure 2.3: Examples of RA.

Finite-state automata can always be complemented. Register automata have lost this
property: For a register automaton A, a corresponding register automaton Ac such that
L(Ac) = L(A)c may not exist.

Proposition 2.31. RA are not closed under complementation.

Proof. Consider the register automaton R from example 2.30. A register automaton
identifying the complement of L(R) would have to identify exactly the words in which no
letter repeats. As shown in [14, section 2, proposition 5], such a register automaton does
not exist.

Register automata are capable of identifying a wide range of languages, which leads to
a recurring problem in automata theory: The more powerful the class of automaton, the
more does the complexity of operations increase and the more likely it is that important
decision problems are undecidable. For the same reason, the ability to complement RA has
been lost. The universality problem (and therefore, also the equivalence and containment
problems) is undecidable for register automata (see [18]), and the membership and non-
emptiness problems are NP-complete (see [20]).

2.3.2 Variable Automata

An alternative to register automata are variable automata, which are also capable of
comparing input letters to a set of stored parameters (here called bounded variables).
Unlike register automata, the parameters of variable automata cannot be reassigned. The
content of this subsection largely follows [10].

Definition 2.32 (variable automata, [10, section 2]). A variable finite automaton (VA)
A = ⟨D,M⟩ consists of an infinite alphabet D and an FSA M = (Σ, Q, q0, δ, F ), called
the pattern automaton of A. The alphabet of M , which we call Σ = C ∪Y ∪{z}, consists
of:

� a finite set of constant letters C ⊆fin D,
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� a finite set of bounded variables Y = {y1, . . . , yn} ,

� and a free variable z.

The sets C, Y and {z} are pairwise disjoint.
Intuitively, for each run of a word through the automaton, the bounded variables are

assigned letters from D according to some assignment function µ : Y → D. No two
bounded variables may be assigned the same letter, and no bounded variable may be
assigned a constant letter. A transition (q, yi, p) is viable if the word’s current letter
matches the assignment to yi, and a transition (q, z, p) is viable if the current letter does
not match the assignment to any bounded variable. A word is accepted if there exists a
variable assignment such that the word completes a run in an accepting state.

Formally, a word w = (w1, . . . , wn) ∈ D∗ is accepted by A if there is a word v =
(v1, . . . , vn) ∈ L(M) ⊆ Σ∗ and an injective variable assignment µ : Y → D \ C such that

µ−1(w) = v, where µ−1(wi) =


wi wi ∈ C

yk yk ∈ Y and µ(yk) = wi

z else.
In the literature, v is called a witnessing pattern of w.

q0start q1 q2
y1

z

y1

y1
z

(a) The pattern automaton of a determinis-
tic VA V1 that accepts all words whose first
and last letter match.

q0start q1 q2

z

y1

z

y1

z, y1

(b) The pattern automaton of a VA V2 ac-
cepting all words that repeat some letter.

Figure 2.4: Examples of VA.

Similar to register automata, we can observe:

Proposition 2.33 ([10, section 3, theorem 3]). Variable automata are not closed under
complementation.

Proof. As a counterexample, we use the same language that has been used in the cor-
responding proof for register automata. The language L = {w = w1w2 . . . wn, wi =
wj for some i, j ≤ n, i ̸= j} can be expressed via a VA, as seen in figure 2.4b. However,
there is no VA corresponding to the complement of the language.

Assume that a VA identifying the complement exists, using n bounded variables. Let
w be a word consisting of n+2 non-constant, distinct letters. Since there are more letters
in w than bounded variables, w’s run through the automaton has to traverse a transition
labeled z at least twice.

Let wi and wj be two letters of w (in the positions i ̸= j) that are using the z-
transitions. Let v ∈ D∗ match w in all positions except j, where vj = wi. Then v ∈ L,
as the letter vi = vj occurs twice. However, v’s run traverses the assumed complement
automaton on the same path as the run of w, and therefore ends in an accepting state.
Therefore, an automaton accepting the complement of L cannot exist.
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The VA V2 depicted in figure 2.4b helps illustrate how the assignment of variables
forces the trajectory of a run. Consider the word w = (1, 3, 3). The word only terminates
in the accepting state q2 if µ(y1) = 3. When using the assignment µ(y1) = 1, the run
terminates in state q1 instead. Although the pattern automaton of V2 is deterministic,
there are words that can complete more than one distinct run in V2.

The VA V1 in figure 2.4a is deterministic in the sense that each word only completes
one distinct run. Consider w = (2, 2, 2). Only the assignment µ(y1) = 2 will permit the
run to exit state q0. Any other variable assignment will cause the run to die, as there is
no viable transition exiting q0. After this first step, each transition taken by the word’s
run is predetermined.

When working with VA, it is therefore important to distinguish between different
notions of determinism. Parametrized automata will inherit this trait.

Example 2.34. The languages identified by VA and RA, respectively, are incomparable.
For example, the language LR = {w = (w1, . . . , wn) ∈ D∗ | w2i = w2i−1∀1 < 2i ≤ n
and n is even} can be identified by a RA, but not by a VA. The language LA = {w =
(w1, . . . , wn) ∈ D∗ | wi ̸= wn∀i < n} containing all words whose last letter is different
from all previous letters, on the other hand, can be identified by a VA but not by a RA,
as RA cannot compare for inequality.

For VA, the non-emptiness problem is NL-complete and the membership problem is
NP-complete, while universality and containment are undecidable (all [10, section 4]).

2.3.3 Symbolic Automata

Both register automata and variable automata can store and compare letters of a word.
Symbolic automata (SFA, [7]) are using a very different approach to handle infinite alpha-
bets: Their transitions are labeled with logical formulae, also called guards. A transition
is viable if the current letter satisfies the conditions posed in the corresponding formula, or
guard. Since SFA cannot compare letters of a word and VA cannot apply logical formulae
to letters, both kinds of automaton are incomparable and are suited for different kinds of
languages.

q0start q1 q2

x is even
x is even
∧ x > 5

x is even

ε

x is odd

(a) An SFA that is non-deterministic and uses
ε-transitions

q0start q1

q2q3

x is even
∧ x ≤ 5

x is even
∧ x > 5

x is odd

x is even

x is odd

x is odd

x is even

⊤
(b) A deterministic version of the same
SFA.

Figure 2.5: Examples of SFA.
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In this thesis, all automata are assumed to use the same theory to ensure compatibility.
Examples will often use the theory of real numbers.

Definition 2.35 (symbolic finite-state automata, [7, section 2, definition 1]). A symbolic
finite automaton is a tuple A = (M,Q, q0, δ, F ) of

� a structure M = (D, I), where D is an infinite alphabet,

� a finite set of states Q,

� an initial state q0 ∈ Q,

� a transition relation δ ⊆fin Q× (Φ ∪ {ε})×Q and

� a finite set F ⊆ Q of accepting states.

Φ denotes the set of all formulae using only one free variable x. Transitions labeled
with ε, which shall be a symbol not occurring in Φ, refer to ε-transitions analogously to
finite-state automata. A word w ∈ D∗ is accepted if there exists a sequence of letters
a1, . . . , an ∈ D ∪ {ε}, a family of variable assignments (µai)i=1,...,n, and a complete run
(qi−1, φi, qi) for i = 1, . . . , n in A such that

� a1a2 . . . an = w,

� µai(x) = ai for all i = 1, . . . , n where ai ̸= ε, i. e., x is assigned the value of the
current letter in every step,

� φi = ε⇔ ai = ε,

� vM,µai
(φi) = true for i = 1, . . . , n where ai ̸= ε, i. e., all involved formulae are true,

and

� qn ∈ F , i. e., the path ends in an accepting state.

SFA and FSA behave very similarly, because based on the guard formulae, an SFA’s
infinite alphabet can be partitioned into a finite number of equivalence classes whose mem-
bers have identical properties within the automaton. An SFA is deterministic if in each
state and for each letter, exactly one exiting transition is viable. Algorithms for deter-
minizing SFA (including elimination of ε-transitions) are well-known (for further reading,
see [22, section III]). A deterministic SFA can be complemented easily by changing the
set of accepting states from F to Q \ F .

Since every symbolic automaton can be determinized, symbolic automata are closed
under complementation.

2.3.4 Other Classes of Automata

There are other classes of automata that share traits with parametrized automata and
should be mentioned for the purpose of disambiguation.

Symbolic register automata ([4]) combine register and symbolic automata. Differ-
ent from parametrized automata, the symbolic and register components run “in parallel”
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without interacting: Each transition is labeled with a pair of a logical formula and register
instructions that are both applied to the input letter independently. In other words, the
letters previously stored in registers cannot occur in logical formulas.

Similar to parametrized automata, symbolic register automata are closed under union
and intersection, but not under complementation unless the automaton is deterministic.
The non-emptiness problem is decidable, but decidability of the containment and equiv-
alence problems are only shown for deterministic symbolic register automata.

Parametric semilinear data automata ([9]) implement parametric semilinear data
logic, an extension of linear temporal logic that permits, for example, letter counting.
Parametrized automata are not restricted to a single logic; the complexity of decision
problems such as the non-emptiness problem depends on the underlying theory. The non-
emptiness problem for parametric semilinear data automata is in NEXP.

Extended symbolic finite automata ([6]) are symbolic automata capable of reading
multiple adjacent input letters in one transition. Extended symbolic finite automata are
closed under union, but not under intersection or complement, and the non-emptiness
problem is decidable while the universality and equivalence problems are not.
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Chapter 3

Parametrized Automata

3.1 Definition and Notations

After the groundwork of chapter 2, we can finally properly introduce parametrized au-
tomata (PA), the star of this thesis, and start with original research. PA are combining
traits of both symbolic automata (SFA) and variable automata (VA): Their transitions
are labeled using formulae, called guards, and additionally the formulae may include a
finite number of assignable variables or parameters. Once the parameters are assigned
fixed values, the resulting automaton behaves identically to an SFA. A word is accepted
by a PA if there exists an assignment of parameters such that the word is accepted in the
resulting SFA.

For this purpose, let {x} ∪ Y be a set of variables such that x /∈ Y = {y1, y2, . . . } and
Φ be the set of formulae using the variables {x} ∪ Y (Y denoting the infinitely large set
of parameters). Similar to the definition of symbolic automata, x will continue to be the
placeholder variable for the current letter, and is not considered a parameter.

Examples of PA can be seen in figure 3.1.

q0start q1 q2

⊤

x = y x < y

⊤

(a) A1, identifying unsorted words.

q0start q1

x < y

x = y

(b) A2, identifying words
whose last letter is largest.

q0start

y ≤ x ≤ y + 1

(c) A3, identifying
words whose letters fall
within an interval of
length 1.

Figure 3.1: Examples of parametrized automata using the theory of real numbers. In all
three examples, y denotes the single parameter.

Definition 3.1 (parametrized automata). A parametrized automaton is a tuple A =
(M,Q, q0, δ, F ), where

� M = (D, I) is a structure and D is an infinite alphabet,

� Q is a finite set of states,
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� q0 ∈ Q is the initial state,

� F ⊆ Q is the set of accepting states, and

� δ ⊆fin Q× Φ×Q denotes the transition relation using a set of formulae Φ.

A word w = (w1, . . . , wk) ∈ D∗ is accepted by the automaton A if there exists a family of
variable assignments (µi)i=1,...,n and a sequence of transitions (q0, φ1, q1), (q1, φ2, q2), . . . ,
(qk−1, φk, qk) in A, called a complete run, such that

� µi(y) = µj(y) for all i, j ∈ {1, . . . , n} and y ∈ Y ,

� µi(x) = wi for all i = 1, . . . , n, i. e., x is assigned the value of the current letter in
every step,

� vM,µi(φi) = true for i = 1, . . . , n, i. e., all involved formulae are true, and

� qn ∈ F , i. e., the run terminates in an accepting state.

We will always assume that a PA is normalized, i. e., for two states q, p ∈ Q there is
at most one transition (q, φ, p) ∈ δ. Therefore, a PA with n states will always have
at most n2 transitions. This does not restrict the power of PA, as a set of transitions
{(q, φ1, p), . . . , (q, φk, p)} connecting q and p can always be replaced by the single transi-
tion (q, φ1 ∨ · · · ∨ φk, p). We also assume that the underlying theory T is decidable, i. e.,
satisfiability of T -formulae is decidable.

Since Y is infinite, each variable assignment µi contains a lot of redundant information
about the variables that do not occur in formulae of A. Additionally, the placeholder
variable x has to be constantly reassigned, conforming to a word’s current letter. We will
therefore introduce the parameter assignment, which only contains information about the
finite number of variables that occur in the formulae and do not represent the current
letter. The parameter assignment is constant throughout a run.

Notation 3.2 (parameter assignment). Since δ is finite, the occurring formulae only make
use of a finite set of variables, which we will name YA = {y1, . . . , yk}. Due to the condition
that µi(y) = µj(y) for all i, j ∈ {1, . . . , n} and y ∈ Y , there exists a well-defined function
µ : YA → D such that µ(y) = µi(y) for all i = 1, . . . , n and y ∈ YA. We refer to µ as a
parameter assignment (as opposed to a variable assignment, which includes the variable
x). For any parametrized automaton A using the parameters YA, let Θ = {µ : YA → D}
be the set of all possible parameter assignments. We say A has k parameters.

A PA can be “constricted” to one parameter assignment, obtaining a symbolic au-
tomaton:

Notation 3.3. Let A = (M,Q, q0, δ, F ) be a PA using the finite parameter set YA and µ :
YA → D be a parameter assignment. We obtain a new automaton Aµ by replacing every
variable yi ∈ YA occurring in a transition formula φ ∈ Θ with its assigned value µ(yi) ∈
D. Since constants now substitute for all variables save x, Aµ is a symbolic automaton
accepting exactly the words that are accepted by A using the parameter assignment µ.
Clearly, L(Aµ) ⊆ L(A) and L(A) =

⋃
µ∈Θ L(Aµ).
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A2 in figure 3.1 illustrates how the choice of parameters influences a word’s run: A
word w ∈ L(A2) is only identified correctly if the last letter of w is assigned to y. Only
then will the run terminate in the accepting state. If µ(y) is too large, the run will never
transition from q0 to q1 and end in a non-accepting state. If µ(y) is too small, the run will
either transition to state q1 too early and die because there are no exiting transitions, or
the run will die in state q0 as soon as w reaches a letter larger than µ(y), as no exiting
transition is satisfied.

If a word v is not part of L(A2), it will never terminate in q1. Therefore, the automa-
ton works correctly.

This thesis is focused on the complementation problem for parametrized automata.
Does every PA A have a complement PA Ac such that L(A)c = L(Ac)? And how could
this complement PA be computed? Since the former question can be answered using
nothing but the meager tools that have just been defined, it will not be delayed further:

Theorem 3.4. PA are not closed under complementation, i. e., there is a PA A such that
no PA Ac with the property L(Ac) = L(A)c exists.

q0start q1 q2

⊤

x = y x < y

⊤

Figure 3.2: A1 as seen in figure 3.1, a PA that cannot be complemented.

Proof. Consider example A1 seen in figure 3.2, a PA using the theory of real numbers
which randomly assigns a letter wi of a word w = (w1, . . . , wk) to its parameter y and
accepts the word if the succeeding letter is smaller than wi = y. As such, A1 identifies
unsorted words: L(A1) = {w = (w1, . . . , wk) ∈ D∗ | ∃1 ≤ i < k : wi > wi+1}. Note that,
by this definition, a word is sorted if its letters occur in ascending order. An example of
a sorted word is (1, 2, 3), while (1, 3, 2) is not a sorted word. The complement of L(A1) is
the set of all sorted words w = (w1, . . . , wk) with the property i < j ⇒ wi ≤ wj.

We will prove that a complement automaton identifying L(A1)
c cannot exist using a

proof by contradiction that has a similar flavor as the pumping lemma (see [11, section
4.1]). Assume for contradiction that such an automaton Ac1 exists, having n states. Let
w = (1, 2, 3, . . . , 2n+ 1). Since w ∈ L(A1)

c, there is a parameter assignment µ such that
w completes an accepting run in (A1)µ. Then by a counting argument, we can argue the
run of w in Ac1 traverses some state q thrice, creating a loop of length greater than 1. This
loop is traversed by a subword (i, i+ 1, . . . , i+ k) of w where k ≥ 1.

Therefore, the word w′ = (1, 2, . . . , i + k − 1, i + k, i, i + 1, . . . , 2n + 1) obtained by
repeating the found loop completes an accepting run in Ac1. However, w′ is not a sorted
word. Therefore, Ac1 does not work directly and a PA identifying all sorted words cannot
exist.

This result is not surprising, given that VA and RA are also not closed under comple-
mentation and the models share similar traits. Yet so far, we have not proven in detail
how parametrized automata relate to the other classes of automata described in section
2.3. Intuitively, PA subsume variable and symbolic automata, meaning that if a language

30



can be recognized by a symbolic automaton or a variable automaton, it can also be rec-
ognized by a suitable parametrized automaton. We will now prove this intuition formally,
and also see that PA and register automata are incomparable.

Theorem 3.5 (automata hierarchy). Parametrized automata subsume variable and sym-
bolic automata, but not register automata.

The statement is visualized in figure 3.3.

Proof.

� Symbolic automata: An SFA is a PA in which no parameters occur.

� Variable automata: In order to create a PA equivalent to a given VA, it is not
sufficient to create a “copy” of the VA where each transition (q, yi, p) is replaced by
a transition (q, x = yi, p). Compared to PA, VA impose additional restrictions on
possible parameter assignments. No two bounded variables can be assigned the same
value or a constant, and the free variable z may only correspond to values that are
not assigned to a bounded variable. PA do not come with the same restriction, so
some inequality checks have to be added manually. Also, PA are usually normalized
while VA are not.

Let A = ⟨D, V ⟩ be a VA with pattern automaton V = (Σ, Q, q0, δ, F ). For two
states q, p ∈ Q, let S(q,p) be the set of all letters s ∈ Σ such that (q, s, p) ∈ δ.

Let M = (D, I) be a structure that permits an equality relation I(=), ensur-
ing that letters in D can be compared for equality and inequality. A PA Ap =
(M,Q, q0, δp, F ) that is equivalent to A shall make use of k parameters y1, . . . , yk,
named like the bounded variables of V for convenience. All constant symbols from
Σ need to be letters from D and therefore can still be treated like constants in Ap.
Let the sets Q and F and the state q0 be equal to the sets and state Q, F and q0 of
V .

In order to obtain a normalized PA, each transition between the states q and p in
Ap needs to represent the set of all transitions between the states q and p in V .
All variables and constants which permit transition from q to p in V are contained
in the set S(q,p), so a straightforward translation of A to the language of PA might
replace each transition (q, s, p) in V with (q, x = s, p) in P . Normalizing, we obtain
a transition (q, φ′, p) where φ′ ≡

∨
s∈S(q,p)\{z} x = s. This leaves the z variable, which

represents all letters not assigned to another variable or a constant. If z ∈ S(q,p),
then φ′ ≡

∧
s/∈S(q,p)

x ̸= s can be used instead. We are not finished yet, however.

VA have the additional requirement that each letter of D can be represented by
exactly one symbol of Σ: No variable may be assigned a letter that is already
assigned to a different variable or a constant, and z may only represent letters
that are not already represented by a variable or a constant. A messy way of
implementing this requirement in Ap might be to add the necessary inequality checks
(e. g., yi ̸= yj for every pair of variables yi, yj) to every single transition. This
leads to a quadratic blowup in the length of transition guards, adding roughly |Σ|2
subformulae to each guard φ′. Luckily, there is a much more elegant solution.
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We can eliminate most of the described inequality constraints by redefining the
constraints in relation to x.

Let the finite relation δp ⊆fin Q× Φ×Q contain the following transitions:

– Case 1. If z /∈ S(q,p) for q, p ∈ Q: Let (q, φ, p) ∈ δp where

φ ≡ (
∨

s∈S(q,p)

x = s) ∧
∧

s/∈S(q,p)

x ̸= s.

– Case 2. If z ∈ S(q,p) for q, p ∈ Q: Let (q, φ, p) ∈ δp where

φ ≡
∧

s/∈S(q,p)

x ̸= s.

The resulting PA Ap = (M,Q, q0, δp, F ) is equivalent to A. Borrowing notation
from PA, the language L(A) corresponds to the union of all L(Aµ) where µ :
{y1, . . . , yk} → D \ C is an injective map and C denotes the set of constants. The
conditions specified in the transition formulae of Ap are implied by the inequality
constraints imposed on how variable automata may map their variables to letters,
and therefore every word accepted by A using some µ as defined above can be
accepted by Ap using the same µ. This means L(A) ⊆ L(Ap).

In the other direction, L(Ap) ⊆ L(A) holds if for every word w ∈ L(Ap), there is an
injective parameter assignment µ : {y1, . . . , yk} → D \ C such that w ∈ L(Aµ). Let
w ∈ L(Ap), meaning there is a parameter assignment µ′ such that w ∈ L((Ap)µ′).

If µ′ is injective and does not map any variables to C, then the accepting run
(q0, φ1, q1), . . . , (qn−1, φn, qn) of w in (Ap)µ′ can be mirrored in A = ⟨D, V ⟩: In
every transition formula φi, there is either a clause x = yj which evaluates to true
and corresponds to the transition (qi−1, yj, qi) in V or, if no clauses of the form
x = yj exist, the transition (qi−1, z, qi) in V can be taken. We can thus construct
an accepting run in A, assigning the variables according to µ′.

If µ′ is not injective or maps variables to C, we need to construct a parameter
assignment µ such that w ∈ L((Ap)µ) that is both injective and maps no variables
to C, allowing us to fall back to the first scenario.

Assume that there is a variable yi which is mapped to a constant value c ∈ C. Let
(q0, φ1, q1), . . . , (qn−1, φn, qn) be an accepting run of w in (Ap)µ′ , meaning that all
transition formulae φj are satisfied. There is therefore no guard φj where both the
clause x = yi and the clause x ̸= c hold at the same time (or vice versa, the clauses
x = c and x ̸= yi). Due to the way the guards are constructed, whenever the clause
x = yi is both contained in a guard and evaluates to true, the clause x = c also has
to be contained and evaluate to true. We can therefore choose any letter a that is
not a part of w or C and modify µ′ such that yi is mapped to a. Using this modified
parameter assignment µ′

a, w will still complete an accepting run in (Ap)µ′a .

The same procedure can be applied if two parameters yi and yj are mapped to the
same letter. After a finite number of steps, we obtain a parameter assignment µ
which is injective and does not map any variables to C. This concludes the proof
of L(Ap) = L(A).
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� Register automata: In example 2.34, VA and RA were shown to be incomparable.
Using the same example languages, the statement can be proven for PA and RA.

The language LA = {w = (w1, . . . , wn) ∈ D∗ | wi ̸= wn for all i < n} cannot be
identified by an RA, but it can be identified by a VA and therefore, by extension,
by a PA.

The language LR = {w = (w1, . . . , wn) ∈ D∗ | w2i = w2i−1 for all 2i ≤ n and n
is even} can be identified by an RA, as seen in figure 2.3. However, LR cannot be
identified by a PA.

Assume for a proof by contradiction that a PA A identifying LR exists, having n
states and k parameters. Let w = w1w1w2w2 . . . wjwj ∈ LR be a word of length
≥ 3n2 such that wi ̸= wl for all i ̸= l, i. e., no letter wi appears in more than
one pair. Since w ∈ LR, w ∈ L(Aµ) for some parameter assignment µ. Because
A has at most n2 distinct transitions, w’s path through Aµ has to traverse one of
these transitions thrice or more, using at least two distinct letters wi, wl since no
letter occurs more than twice in w. If we replace one occurrence of wi with wj, the
resulting word is not part of LR anymore. However, it will still complete the same
path in Aµ and terminate in an accepting state. Because of this false-positive result,
A cannot identify LR correctly and a PA identifying LR cannot exist.

PA

SFAVA
PA RA

Figure 3.3: Relationships between the sets of languages represented by different automata
classes.

3.2 Basic Operations on Parametrized Automata

The definition of parametrized automata does not permit ε-transitions, a concept that is
known in both finite-state and symbolic automata. An ε-transition permits a transition
between states without consuming a letter and, in the case of SFA, without evaluation of
a formula. We will use ε-transitions to construct the union of two parametrized automata,
so the concept will be introduced briefly – followed immediately by a proof showing ε-
transitions can always be eliminated. This way, we can have our cake and eat it, too, by
using ε-transitions whenever they are convenient and omitting them whenever they are
clumsy in a proof.

Definition 3.6 (parametrized automata with ε-transitions). A parametrized automaton
with ε-transitions (ε-PA) is a tuple A = (M,Q, q0, δ, F ), where
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� D is an infinite alphabet,

� Q is a finite set of states,

� q0 ∈ Q is the initial state,

� F ⊆ Q is the set of accepting states, and

� δ ⊆fin Q× (Φ∪ ε)×Q denotes the transition relation using a set of formulae Φ and
the symbol ε, which should not occur in any of the formulae in Φ.

A word w = (w1, . . . , wk) ∈ D∗ is accepted by the automaton A if there exists a sequence
of letters a1, . . . , an ∈ D∪{ε}, a family of variable assignments (µi)i=1,...,n and a complete
run (q0, φ1, q1), (q1, φ2, q2), . . . , (qn−1, φn, qn) in A such that

� a1a2 . . . an = w,

� for all i = 1, . . . , n, φi = ε⇔ ai = ε,

� µi(y) = µj(y) for all i, j ∈ {1, . . . , n} and y ∈ Y ,

� µi(x) = ai for all i = 1, . . . , n where ai ̸= ε, i. e., x is assigned the value of the
current letter in every step,

� vM,µi(φi) = true for i = 1, . . . , n, i. e., all involved formulae are true, and

� qn ∈ F , i. e., the run terminates in an accepting state.

This concept of ε-transitions only permits ε-transitions where no additional guards
occur. This means eliminating ε-transitions can be achieved similarly to finite-state au-
tomata or symbolic automata, by calculating the ε-closure of states.

Proposition 3.7 (ε elimination). For every PAA with ε-transitions, there is an equivalent
PA B (i. e., L(A) = L(B)) that does not contain ε-transitions. B can be computed
algorithmically.

Proof. Let A = (M,QA, q
A
0 , δA, FA) be a PA with ε-transitions. We will construct a

version of A without ε-transitions based on [22, section III.1].
For every state q ∈ Q, let cε(q) be the ε-closure of q, i. e., the least subset of Q such

that q ∈ cε(q) and for every p, r ∈ Q such that p ∈ cε(q) and (p, ε, r) ∈ δ, it follows that
r ∈ cε(q).

Next, for all q, p ∈ Q, let E(q, p) =
∨
{φ | ∃r : r ∈ cε(q), (r, φ, p) ∈ δ, φ ̸= ε} ∈ Φ be

the disjunction of all transition formulas leading from a state in cε(q) to p. Then construct
the PA B′ = (M,QB′ , qB

′
0 , δB′ , FB′) with the following properties:

� QB′ = QA,

� qB
′

0 = qA0 ,

� δB′ = {(q, E(q, p), p) | q, p ∈ QB′ , E(q, p) ∈ Φ},

� FB′ = {q ∈ QB′ | cε(q) ∩ FA ̸= ∅}.

34



Finally, remove all unsatisfiable transitions and all unreachable states from B′ to obtain
the automaton B with the desired property. The topic of identification of unreachable
states will be treated in more detail in section 3.5. It is plain that B accepts exactly the
same words as A does, and that B does not contain any ε-transitions. If A has n states,
B will also have n or fewer states.

There is no clear-cut way to approach determinism in PA. In FSA or SFA, determinism
can be defined in two equivalent ways: Each word completes exactly one run if and only
if for each reachable state and each letter, there is exactly one viable exiting transition.

This does not hold for PAs. The latter, “local” definition of determinism ensures
determinism for a fixed parameter assignment. However, by construction and intention, a
word’s path through a PA also depends on the chosen parameter assignment. Determinism
in PA is a complex subject that can manifest on different levels, which will be explored
in more depth in chapter 4. We will introduce a first notion of determinism that is based
on the definition of determinism for symbolic automata and allows us to ignore the effect
of different parameter assignments.

Definition 3.8 (determinism per assignment). A PA A is deterministic per assignment
if for every parameter assignment µ, the SFA Aµ is deterministic.

Determinism per assignment is a useful property. It guarantees a word will always
complete a run and its terminating state will be determined by the chosen parameter
assignment. We will see later how this is beneficial whenever PA need to be combined.
On the flip side, words that are part of the PA’s language will frequently terminate
in non-accepting states, since words are commonly only accepted by a narrow range of
parameters.

Every PA can be transformed into an equivalent PA that is deterministic per assign-
ment.

Proposition 3.9. For every PA A, an equivalent PA B that is deterministic per assign-
ment can be computed algorithmically.

Proof. This proof is heavily based on the algorithms for determinizing SFA [22, section
III.2] and FSA [11, section 2.2.1]. An FSA without ε-transitions is determinized by
operating on sets of states, instead of the states themselves. A transition (S, a, T ) between
two sets of states S and T exists if T contains exactly the states that can be reached from
states in S via an a-transition. This way, for every letter and every S, there is exactly
one exiting transition.

SFA work with logical formulas instead of letters, so the guards of transitions exiting
a state-set S need to be constructed in a way to ensure that no two exiting transitions
“overlap”. Even if two formulas are syntactically distinct, there may be letters such that
both formulas evaluate to true. For this purpose, sets of transitions are considered: For
any set of states S, consider the set of all transitions that exit any state in S. For each
letter x, this set of transitions divides cleanly into two subsets, one of which contains all
viable transitions while the other contains the remainder, whose guards are not satisfied
by x. Let T be the set of states reached by the set of viable transitions, and label a
transition between S and T with the conjunction of all formulas satisfied by x, while
also adding the conjunction of all negated remaining formulas. After proceeding this way
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for all subsets of transitions exiting states in S, there will always be exactly one viable
transition exiting S for every x.

We formalize this notion and extend it to PA by describing a determinization algo-
rithm.

Let A = (M,QA, q
A
0 , δA, FA). For a transition t = (q, φ, p) ∈ δA, let source(t) = q be

the state it exits, formula(t) = φ be its guard and target(t) = p be the state it enters.
For a state q, let L(q) = {t ∈ δA | source(t) = q} be the set of all transitions exiting
q. Similarly, for a set of states S, let L(S) =

⋃
q∈S L(q). Also, extend the definition of

target(t) to sets of transitions, such that for a set T ⊆ δA, target(T ) =
⋃
t∈T target(t).

For the subset construction, let P (QA) denote the power set of QA, meaning that
ultimately QB ⊆ P (QA). Let G be a stack of elements of P (QA) as a frontier (initially,
G = ({q0})), V a set of elements of P (QA) that were already visited (initially, V = {{q0}}),
and T a set of transitions in B, meaning T ⊆fin P (QA)× Φ× P (QA) (initially, T = ∅).

While G is not empty, pop the element S from G. For each subset Li ⊆ L(S), let
φLi

= ⊤ ∧ (
∧
t∈Li

formula(t)) ∧ (
∧
t∈L(S)\Li

¬formula(t)). If φ(Li) is satisfiable, add

(S, φLi
, target(Li)) to T and if target(Li) has not been visited yet, i. e., target(Li) /∈ V ,

add target(Li) to both V and G. This first satisfiability check can save runtime, but is
not sufficient to ensure that the resulting automaton does not contain unreachable states.
Therefore, it can be omitted.

When G is empty, let B′ = (M,V, {qA0 }, T, {S ∈ V | S ∩FA ̸= ∅}). Unreachable states
and transitions may be removed. Normalize B′ by detecting all instances where there are
two distinct transitions (S, φ1, T ) and (S, φ2, T ) between two states S and T , and replace
those with the single transition (S, φ1 ∨ φ2, T ).

Since V is a subset of the power set of QA, the size of V is bounded by 2n, where n is
the size of QA.

The construction of guards ensures that no two transitions exiting a state can be
viable at the same time, no matter the parameter assignment. There is a subtle difference
between this algorithm and the one proposed in [22]: The subset Li may be empty, in
which case the transition guard leading to the state {} in B is calculated. If S = {}, then
the transition ({},⊤, {}) is calculated. This modification ensures that for every letter
and in every state, at least one exiting transition is viable, which was one condition of
determinism of symbolic automata.

Notation 3.10. While the described algorithm can lead to a unique B, there may exist
several PA that are deterministic per assignment and equivalent to A. Nevertheless,
it may be useful to treat this process of determinization like an operation, especially
when used in convoluted proofs where it is hard to keep track of the constructed PA. In
those situations, we will often denote a PA that is equivalent to A and deterministic per
assignment as ⟨A⟩.

3.3 Closure Properties

Finite-state automata are closed under union and intersection: Given two arbitrary FSA
A and B, we can construct an FSA C such that L(C) = L(A) ∪ L(B) and an FSA D
such that L(D) = L(A) ∩ L(B). If two languages can be represented by FSA, then their
union and intersection can also be represented by suitable FSA.
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The intersection of two parametrized automata can be constructed using a product
construction. A product automaton can simulate a word’s run through two automata at
the same time. A product automaton’s function depends on the chosen set of accepting
states, therefore we will choose an approach that allows for a separation of the construction
of the product from the choice of accepting states. This way, we can make statements
about the product of two automata in general without having to restrict ourselves to one
specific purpose. We do not speak of “the” direct product, but rather a set of PA that
only differ by their accepting states.

Definition 3.11 (direct product construction). Let A = (M,Q, q0, δA, FA) and B =
(M,P, p0, δB, FB) be two PA. Let YA ⊂ Y be the (finite) set of free variables occurring in
the guards of δA and YB ⊂ Y be the (finite) set of free variables occurring in the guards
of δB.

In order to allow for both automata to assign their parameters independently, assume
without loss of generality that YA∩YB = ∅. Should the free variables (except x) occurring
in A and B overlap, the variables of B can always be relabeled via a transformation
f : YB → Y such that f is injective and YA ∩ f(YB) = ∅, f(YB) denoting the image of f .
Assume that A and B use the same variable x to represent the current letter.

Then we define the direct product A × B = {(M,Q × P, (q0, p0), δ, F ) | F ⊆ Q × P}
such that δ = {(q, p), φ1 ∧ φ2, (q

′, p′) | (q, φ1, q
′) ∈ δA, (p, φ2, p

′) ∈ δB}. Any element of
this set can be referred to as a direct product of A and B.

A weakness of this approach to product automata is that the set A × B does not
retain any information on the accepting states of A and B. This information has to be
transferred and converted manually, depending on our goals. For a PA C ∈ A × B, let
FC be its set of accepting states. Since FC is the only trait setting C apart from other
PA in A×B, we introduce the shorthand notation C = (A×B,FC).

A run of a word in a direct product automaton is fully determined by the run of the
word in the original automata, and vice versa.

Theorem 3.12. Let A = (M,Q, q0, δA, FA) be a PA using the finite set of parameters
YA, and B = (M,P, p0, δB, FB) be a PA using the finite set of parameters YB where
YA ∩ YB = ∅. Let C = (A × B,FC) be a direct product automaton. Then a run of a
word w in Cµ (where µ : YA∪YB → D is a parameter assignment) terminates in the state
(q, p) if and only if a run of w in Aµ|YA terminates in the state q and a run of w in Bµ|YB
terminates in state p. Here, µ|YA and µ|YB denote the restriction of µ to the sets YA and
YB, respectively.

Proof. Assume that w terminates in the state (q, p) ∈ Q × P in Cµ. Then there is a
sequence of states and transitions ((q0, p0), φ0, (q1, p1)), . . . , ((qn, pn), φn, (q, p)) such that
vµ,wi

(φi) = true for i = 0, . . . , n, where vµ,wi
denotes the evaluation function when plug-

ging in the current letter wi and the parameter values specified by µ.
For each transition ((qi, pi), φi, (qi+1, pi+1)), the formula φi consists, by definition, of

two subformulae ψ1
i ∧ ψ2

i ≡ φi such that (qi, ψ
1
i , qi+1) ∈ δA and (pi, ψ

2
i , pi+1) ∈ δB. Since

vµ,wi
(φi) = true if and only if vµ,wi

(ψ1
i ) = true and vµ,wi

(ψ2
i ) = true, we can conclude that

w completes the run (q0, ψ
1
0, q1), . . . , (qn, ψ

1
n, q) in Aµ and the run (p0, ψ

2
0, p1), . . . , (pn, ψ

2
n, p)

in Bµ. The parameters YB do not occur in guards of A and can therefore be omitted, and
vice versa.
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Now assume a word w completes a run in AµA in a state q and a run in BµB in a state
p (where µA : YA → D and µB : YB → D are some parameter assignments). Since YA and
YB are disjoint sets, there is a well-defined parameter assignment µ : YA∪YB → D, where

µ(y) =

{
µA(y) if y ∈ YA

µB(y) if y ∈ YB.

Obviously, w completes a run in Cµ in state (q, p).

Direct product automata are capable of simulating the behaviour of two automata
independently because of the demand that the sets of parameters do not intersect.

Later, we will need a type of product construction where the parameters are, in fact,
dependent. We will call this construction the synchronized product. For now, we will only
need to work with the direct product.

Corollary 3.13. The direct product of two PA that are deterministic per assignment is
always deterministic per assignment.

Conveniently, the intersection of two PA can be computed using a direct product
automaton that accepts a word if and only if it is accepted by both parent automata.

Corollary 3.14 (intersection of PA). For two PA A and B, a PA C such that L(C) =
L(A) ∩ L(B) can always be computed. If A has n states and i parameters and B has m
states and j parameters, the resulting PA will have O(nm) states and i+ j parameters.

Proof. Let C = (A × B,F∩) be a direct product automaton of A and B such that F∩ =
FA × FB. A word is accepted by C if and only if it is accepted by both A and B.

An example of the union and intersection of PA can be found in figure 3.4.
A direct product construction is not useful for constructing the union of two PA: If a

word is accepted by an automaton A but never completes a run in an automaton B, it
will never complete a run in any direct product automaton of A × B despite being part
of the union L(A) ∪ L(B). We could transform A and B into equivalent PA that are
deterministic per assignment first, however this may lead to an exponential blowup of the
number of states. A more efficient alternative is to connect the two automata using an
ε-transition:

Proposition 3.15 (union of PA). For any two PA A and B, there is an ε-PA C such that
L(C) = L(A) ∪ L(B). If A has n states and B has m states, then C will have O(n+m)
states.

Proof. Let A = (M,Q, q0, δA, FA) and B = (M,P, p0, δB, FB). Assume without loss of
generality that Q and P , as well as δA and δB, are disjoint. Let r be a state not in Q or
P . Then the automaton C = (M,Q ∪ P ∪ {r}, q, δA ∪ δB ∪ {(r, ε, q0), (r, ε, p0)}, FA ∪ FB)
satisfies L(C) = L(A) ∪ L(B).

To prove that L(C) ⊆ L(A) ∪ L(B), let w terminate a run in an accepting state
of C. Assume without loss of generality that w terminates in a state in FA. Then
w also terminates a run in A in FA, since the initial ε-transition does not consume a
letter of the word. Since the same goes for runs terminating in FB, we can conclude
L(C) ⊆ L(A) ∪ L(B).
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p0start p1 p2

⊤

x = z x < z

⊤

(a) A1, with states and parameters relabeled to
avoid ambiguity.

q0start q1

x < y

x = y

(b) The PA A2.

(q0, p0)start (q0, p1) (q0 , p2)

(q1 , p0) (q1 , p2)

x < y ∧ ⊤

x = y ∧ ⊤

x < y
∧x = z

x < z
∧x = y

x < y
∧x < z

x < y ∧ ⊤

x = y ∧ ⊤

(c) The direct product automaton of A1 and A2 identifying the intersection.

rstart

q0 q1

p0 p1 p2

ε

ε ⊤

x = z x < z

⊤

x < y

x = y

(d) Union of A1 and A2.

Figure 3.4: Union and intersection of PA.

To prove that L(A)∪L(B) ⊆ L(C), assume without loss of generality that w ∈ L(A).
That means w terminates a run (q0, φ0, q1), . . . , (qk−1, φk−1, qn) in an accepting state qn ∈
FA. Therefore, w also terminates the run (r, ε, q0), (q0, φ0, q1), . . . , (qk−1, φk−1, qn) in C in
an accepting state. In conclusion, L(A) ⊆ L(C). In the same manner, L(B) ⊆ L(C) can
be proven.

Therefore, L(C) = L(A) ∪ L(B).

This method of constructing the union does not preserve determinism per assignment
and introduces ε-transitions, which we may not desire. Therefore, a direct product con-
struction can still be useful for computing the union in some cases.

Corollary 3.16. When two PA A = (M,Q, q0, δA, FA) and B = (M,P, p0, δB, FB) are
deterministic per assignment, the direct product (A×B,FA×FB) expresses their union.

Remark 3.17. PA are closed under reversal and concatenation.
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Proof. We “borrow” this observation from the subsequent section on complementation of
PA: It is indirectly proven by proposition 3.21.

3.4 Complementable Parametrized Automata

q0start q1 q2

⊤

x ≥ y

⊤

x = y

(a) Ac2, which identifies the complement of
L(A2).

q0start q2
x = y

x < y

(b) AR2 , which identifies the reverse of
L(A2).

q0start q1 q2
x = y

x < y

x ≥ y

⊤

(c) DR
2 , a strongly deterministic variant of AR2 .

Figure 3.5: Different automata for the complement and reversal of L(A2).

Not all PA can be complemented. This section is therefore dedicated to the subset of
PA that can be complemented, and will contain an investigation of their closure properties.

Definition 3.18 (complementable PA). A PA A is complementable if there exists another
PA Ac such that w ∈ L(A) ⇔ w /∈ L(Ac).

Example 3.19. The PA A2 and A3 from figure 3.1 are complementable. Examples of
their complement automata can be seen in figure 3.5 and figure 4.5, respectively.

A1 is not complementable, as seen in theorem 3.4.

The complement of a complementable PA is obviously also complementable. The same
holds for the union and intersection, which is only slightly less trivial:

Proposition 3.20 (closure of complementable PA under Boolean operations). Let A
and B be two complementable PA with complements Ac and Bc, respectively. Then the
PA representing their union and intersection, here denoted A ∪ B and A ∩ B, are also
complementable.

Proof. Using the known complement automata, De Morgan’s laws ([1, section 1.6]) can
be extended to PA:

w ∈ L(Ac ∩Bc) ⇔ w ∈ L(A)c ∩ L(B)c

⇔ w ∈ (L(A) ∪ L(B))c

⇔ w ∈ L(A ∪B)c,

where A ∪B denotes the union automaton of A and B. Define (A ∪B)c = Ac ∩Bc.
Analogously,

w ∈ L(Ac ∪Bc) ⇔ w ∈ L(A)c ∪ L(B)c

⇔ w ∈ (L(A) ∩ L(B))c

⇔ w ∈ L(A ∩B)c,
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where A∩B denotes the intersection automaton of A and B. Define (A∩B)c = Ac∪Bc.

Proposition 3.21 (reversal of complementable PA). Complementable PA are also closed
under reversal.

A language’s reversal consists of all words of the language “read backwards”, and can
be defined inductively for words as aR = a for letters a and (aw)R = wRa if the suffix
w is a word. An automaton representing a language can be reversed by reversing all
arrows, marking the former initial state as accepting and turning all former accepting
states into initial states (if the original automaton has more than one accepting state,
we can instead introduce a new initial state and connect it to all former accepting states
using ε-transitions).

Proof. The reversal of a complement of a language equals the complement of the reversal,
i. e., a complementable PA’s reversal can be complemented by reversing the complement.
Let A be a PA with complement automaton Ac.

w ∈ (L(A)C)R ⇔ ∃v ∈ L(A)C : v = wR

⇔ wR /∈ L(A)

⇔ w /∈ L(A)R

⇔ w ∈ (L(A)R)C .

In summary, complementable PA are closed under all Boolean operations and reversal.
The nice closure properties start to break down, however, when investigating concatena-
tion.

Concatenation of two languages can be performed directly on the PA representing
the languages. Let A = (M,Q, q0, δA, FA) and B = (M,P, p0, δB, FB) be two PA, where
the sets Q and P are disjoint. Let δ∗ = {(q, ε, p0) | q ∈ F} be a set of ε-transitions
connecting all accepting states of A to the initial state of P . Then the automaton AB =
(M,Q∪P, q0, δ∪δ∗, FB) identifies the concatenation of the languages of A and B, L(AB) =
L(A)L(B).

Proposition 3.22. Complementable PA are not closed under concatenation.

Proof. As confirmed by theorem 3.4, the complement of the language L1 of all unsorted
words cannot be recognized by a PA. However, L1 can be represented by the concatenation
of two complementable PA.

Each unsorted word has a suffix w whose first letter is larger than the second. The
language in which the first letter is larger than the second letter can be identified by a
PA A that is complementable. In order to represent all words from L1, the occurrence
of this instance of disorder can be offset by allowing arbitrary words (stemming from the
universal language, represented by the PA U) to be attached in front. The concatenation
of U and A therefore identifies L1.
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q0start

⊤

(a) A PA U for the universal language,
which can be complemented by marking
state q0 as non-accepting.

q0start q1 q2
x = y x < y

⊤

(b) A PA A accepting all words in which the
first letter is larger than the second letter.

Figure 3.6: Two example PA that, when concatenated, are equivalent to A1.

q0start q1 q2
x = y x ≥ y

⊤

Figure 3.7: A complement automaton for A, proving A can be complemented.

3.5 Decision Problems

The following section is dedicated to the most common decision problems regarding
parametrized automata. Similar to our cursory investigation of FSA, we will look at the
universality, equivalence, containment, non-emptiness and reachability problems. The
universality problem will quickly turn out to be undecidable for PA, which has dire con-
sequences for problems relating to the complementation of PA.

Theorem 3.23 (universality). Universality is undecidable for PA.

Proof. Universality is undecidable for variable automata (see [10, chapter 4]), as can be
shown by a reduction from Post’s Correspondence Problem. For PA in general, we can
either do a similar reduction or argue, since PA subsume VA, that undecidability follows
directly.

Corollary 3.24 (equivalence). The question whether two PA A and B are equivalent, i.
e., L(A) = L(B), is undecidable.

Proof. Assume that there is a Turing machine M determining whether two input PA A
and B are equivalent. We can useM to find out whether an arbitrary PA A is universal, by
setting B to a PA representing the universal language. This contradicts the undecidability
of universality.

Corollary 3.25 (containment). The containment problem for PA (i. e., for two PA A
and B, is L(A) ⊆ L(B)?) is undecidable.

Proof. Assume that there is a Turing machine M determining whether L(A) ⊆ L(B)
for two input PAs A and B. We can use M to find out whether an arbitrary PA B is
universal, by setting A to a PA representing the universal language. This contradicts the
undecidability of universality.

The non-emptiness problem and the reachability problem are decidable (see also [13,
section 3, proposition 1]).
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Theorem 3.26 (non-emptiness, reachability). Let T be a theory. Assume that satisfia-
bility of T -formulas is decidable in NP [PSPACE]. Then the non-emptiness problem and
the problem of deciding whether a certain state of an automaton is reachable are also
decidable for all PA using T in NP [PSPACE].

Proof. Starting with the reachability problem: To check whether a single state q is reach-
able, it is sufficient to list all non-cyclic paths from the initial state to q and check if there
exists a word w and a parameter assignment µ such that w can traverse one of these
paths. For a path (q0, φ0, q1), (q1, φ1, q2), . . . , (qm, φm, q), the variable x occurring in each
φi needs to be relabeled to a distinct xi (where xi is no parameter and not equal to any
other xj), since the letters of the word can and should be chosen freely. The parameters
{y1, . . . , yk} need not be relabeled.

Thus, the conjunction
∧m
i=0 φi contains the free variables x0, . . . , xm, y1, . . . , yk. The

conjunction is satisfiable if and only if there exists a word w = x1x2 . . . xm ∈ D∗ and a pa-
rameter assignment µ : Y → D such that w traverses the path (q0, φ0, q1), (q1, φ1, q2), . . . ,
(qm, φm, q), terminating in q. Since the satisfiability check is decidable and there is a finite
number of non-cyclic paths from the initial state to q, reachability is decidable.

A PA is empty if and only if none of its accepting states are reachable. Therefore, we
simply need to perform a reachability check on all accepting states.

At this point, we can briefly describe the removal of unnecessary transitions. The
identification of unreachable states has already been discussed, so those can be removed
(including all transitions leading to said states) without altering the functionality of the
PA itself.

The identification of unsatisfiable transitions in symbolic automata is fairly simple,
as it is sufficient to consider a guard in isolation and determine its satisfiability without
further context. In parametrized automata, a local examination of guards may not be
sufficient because prior choices of parameters can influence the satisfiability of guards.
While a formula in isolation may be satisfiable, it may be unsatisfiable when a number of
guards on a path leading to said formula have to hold at the same time.

Let (q, φ, p) be a transition, meaning that φ is the guard we want to check for sat-
isfiability. Similar to the reachability check, all non-cyclic paths leading from the initial
state q0 to q can be listed. After relabeling the x-variables in the guards φ1, φ2, . . . , φm
along a path, we can construct a similar conjunction

∧m
i=0 φi. The transition φ is globally

satisfiable only if there exists a path such that
∧m
i=0 φi ∧ φ is satisfiable. If no such path

exists, the transition is never viable and can be removed without consequences.

q0start

⊤

q0start

⊤

Figure 3.8: The universal language and its complement, expressed by PA.

Complementation can be used as a tool in deciding universality of PA: If a PA cannot
be complemented, it cannot be universal as the complement of the universal language can
be represented by a PA (see figure 3.8). If a PA can be complemented and its complement
is empty, as a consequence the original PA has to be universal.
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However, the universality problem is undecidable for PA, and therefore, the comple-
mentation problem cannot be “easy”.

Corollary 3.27 (undecidability of complementation). Under the condition of non-empti-
ness being decidable, there is no Turing machine which can take an arbitrary PA as input
and then either returns its complement, or returns that a complement does not exist.

Proof. Assume that there is a Turing machine M which takes a PA as input and returns
either a PA describing the complement, or returns that such a PA does not exist. If
a PA A cannot be complemented, it cannot be universal. If it is complementable, the
complement can be checked for non-emptiness. If the complement is empty, the language
is universal. This contradicts undecidability of universality of PA.

There is no hope of finding a practical “two-in-one”-algorithm that both identifies
complementable PA, and then computes the complement. It remains an open question
whether both steps are undecidable, or if maybe one part of the process is decidable.

The following chapters will therefore be dedicated to partial solutions and approxi-
mations, identifying subclasses of PA that are easier to complement. The first will be
strongly deterministic parametrized automata.

Symbolic
Automata

Strongly Deterministic
Parametrized Automata

Complementable
Parametrized Automata

Parametrized Automata

Figure 3.9: Relations between the different types of parametrized automata.
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Chapter 4

Strongly Deterministic Parametrized
Automata: A Complementable
Fragment

q0start q1 q2 q3 q4
x = p x = p

x = p2 ̸= p

x = p

x = p2 ̸= p

x = p2

x ̸= p2

⊤

(a) An SDPA equivalent to P from section 1.1.

q0start q1 q2
x = y

x = y
x ̸= y

x ̸= y

x = y

(b) D4, identifying all words whose first and last letter coincide.

Figure 4.1: Two examples of strongly deterministic parametrized automata.

4.1 Definition and General Properties

Finite-state automata and symbolic automata use a notion of determinism that allows
for easy complementation: In a deterministic FSA or SFA, every word has exactly one
complete run, so a word is part of the complement language if and only if its run terminates
in a non-accepting state.

Determinism per assignment has been introduced in definition 3.8. In a PA that is
deterministic per assignment, there is exactly one complete run for each word – assuming
the automaton is restricted to one fixed parameter assignment. A word’s run may still
terminate in different states for different parameter assignments. Therefore, determinism
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q0start q1

x < y

x = y

Figure 4.2: A2, as seen in figure 3.1.

per assignment is not a suitable foundation for complementation algorithms as seen in
FSA or SFA.

In this regard, PA share similarities with variable automata ([10]). For VA, a deter-
ministic pattern automaton does not guarantee each word to complete exactly one run
in the corresponding VA. In search for a more meaningful notion of determinism that
ideally paves the way for complementation, the authors of [10] have therefore proposed
a definition of determinism that demands each word to have exactly one run considering
all possible variable assignments. This way, since no word that is part of the language
may ever terminate in a non-accepting state, deterministic variable automata can be
complemented as easily as deterministic finite-state or symbolic automata.

In this chapter, we will investigate whether this approach is suitable for parametrized
automata.

Definition and Notation 4.1 (sets of runs). For a PA A = (M,Q, q0, δ, F ), let Γ(A)
denote the set of all finite sequences s = (q0, φ0, q1), (q1, φ1, q2), . . . , (qn, φn, qn+1) starting
in the initial state q0 and terminating in some arbitrary state qn+1 ∈ Q where each
(qi, φi, qi+1) ∈ δ is a transition of A. Note that runs in Γ(A) may contain transition
formulae that are, in conjunction, unsatisfiable; we only demand each transition to begin
in the state entered by the previous transition of the sequence. Intuitively, Γ(A) contains
all candidates for runs in A.

Let w ∈ D∗ be a word and µ ∈ Θ be a parameter assignment. Each run of w in Aµ
corresponds to a unique sequence of transitions in Γ(A).

Then we define pµ(w) ⊆ Γ(A) to be the set of all sequences of transitions representing
complete runs of w in Aµ, and paµ(w) ⊆ pµ(w) ⊆ Γ(A) to be the set of all sequences of
transitions representing accepting runs of w in Aµ.

For a set S, let |S| be the number of elements of S. If S is infinite, define |S| = ∞.
Else we denote n = |S| <∞.

Example 4.2. Consider A2 from figure 4.2. There are two transitions in A2, t1 = (q0, x <
y, q0) and t2 = (q0, x = y, q1). Using regular expression notation as introduced in defi-
nition 2.7, Γ(A2) can be described by the expression t∗1(t2 + ε), i. e., Γ(A2) contains all
sequences of transitions where t1 repeats an arbitrary number of times, followed by one
or zero occurrences of t2.

Let w = (1, 2, 3, 4) ∈ L(A), and µ : {y} → D∗ be a parameter assignment. Then

pµ(w) =


∅ if µ(y) < 4

{t1t1t1t2} if µ(y) = 4

{t1t1t1t1} if µ(y) > 4

and |paµ(w)| = 1 ⇔ µ(y) = 4.

46



Proposition 4.3. For every PA A = (M,Q, q0, δ, F ), the set Γ(A) is countable. If A
does not contain ε-transitions, |pµ(w)| < ∞ for every word w ∈ D∗ and every parameter
assignment µ.

Proof. We will prove the first statement by finding an injective map m : Γ(A) → N.
Let n = |Q| be the number of states of A. Since A is assumed to be normalized, there
are no more than n runs in Γ(A) of length 1, no more than n2 runs of length 2, and
no more than nk runs of length k ∈ N. Enumerate the states Q = {q1, q2, . . . , qn}.
A run ((q0, φi1 , qi1), . . . , qik−1

, φik , qik) of length k, where i1, . . . , ik ∈ {1, . . . , n}, can be
characterized solely by the sequence of states (qi1 , qi2 , . . . , qik) entered in each transition.

The run of length 0 is mapped to 0. The remaining elements of Γ(A) can be enumerated
by mapping each sequence (qi1 , qi2 , . . . , qik) according to the formula

k∑
j=1

ij · nj−1.

The procedure is visualized in the following table:

sequence (q1) (q2) . . . (qn) (q1, q1) . . . (qn, qn) (q1, q1, q1) . . .
N 0 1 2 . . . n 1 + n . . . n+ n · n 1 + n+ n · n . . .

We have over-approximated the target function m, since our instructions provide a
bijection between N and the set of all finite sequences over {q1, q2, . . . , qn}. Be removing
all sequences that are not part of Γ(A), we remain with an injective map m : Γ(A) → N.

The second statement is a consequence of previous observations: A complete run of a
word of length k will traverse exactly k transitions, putting an upper limit of nk to the
number of possible complete runs.

q0start q1
x = y

x < y

(a) AR2 , the reversal of A2.

q0start q1 q2
x = y

x < y

x ≥ y

⊤

(b) An SDPA equivalent to AR2 .

q0start

q2

q1
x = y

x ̸= y

x < y

x ≥ y

⊤
(c) A PA equivalent to AR2 that is deterministic per assignment.

Figure 4.3: Different representations for LR2 , the language of words in which the first letter
is strictly largest.
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Definition 4.4 (completeness, conclusiveness, strong determinism). Consider the PA
A = (M,Q, q0, δ, F ).

� A is called complete if for every word w ∈ D∗, |
⋃
µ∈Θ pµ(w)| ≥ 1, i. e., there is a

parameter assignment µ such that the word completes a run.

� A is called conclusive if for every word w ∈ D∗, |
⋃
µ∈Θ pµ(w)| ≤ 1, i. e., there is at

most one run for every word.

� A is strongly deterministic (an SDPA) if for every word w ∈ D∗, |
⋃
µ∈Θ pµ(w)| = 1,

i. e., there is exactly one run for each word.

An SDPA is therefore both complete and conclusive. Note that conclusiveness does
not that imply there is at most one parameter assignment for each word to complete a
run. It only means that if there are two parameter assignments µ1 and µ2 such that a
word w completes a run in Aµ1 and Aµ2 , the runs have to be identical. An example is A3

as seen in figure 4.3.
We say that a PA A is determinizable if there exists an SDPA A′ such that L(A) =

L(A′).

Example 4.5. Consider the PA depicted in figure 4.3. The first, AR2 , is conclusive because
each state has exactly one exiting transition, forcing each run to either take that transition
or die. However, AR2 is not complete because words that are not part of the language will
never complete a run.

When adding a sink state in order to “catch” dying runs, the resulting automaton
seen in figure 4.3b is both conclusive and complete and therefore an SDPA.

PA that are deterministic per assignment, as the one in figure 4.3c, are always com-
plete. However, they are usually not conclusive, as different parameter assignments lead
to different runs. This phenomenon will be explored in more depth later.

Remark 4.6. Determinism per assignment can be defined retroactively in terms of the
notation introduced for SDPA. A PA is deterministic per assignment if for every word
w ∈ D∗ and every parameter assignment µ, |pµ(w)| = 1.

Likewise, completeness and conclusiveness “per assignment” can be defined: A PA
A is complete per assignment if for every word w and every parameter assignment µ,
|pµ(w)| ≥ 1. A PA A is conclusive per assignment if for every word w and every parameter
assignment µ, |pµ(w)| ≤ 1.

Next, the properties of SDPA should be investigated. Similar to the course of action
regarding other classes of automata previously covered in this thesis, we will have a look
at the closure properties under Boolean operations first. Fortunately, we do not need
any more intermediate steps or more refined tools to obtain the desired results: The
direct product construction that has been introduced in section 3.3 is sufficient to prove
that SDPA are closed under union and intersection operations. Since SDPA have been
introduced with complementation in mind, it is trivial to prove that SDPA are also closed
under complementation.

Corollary 4.7. The direct product of two conclusive PA is also conclusive. The direct
product of two complete PA is also complete.
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q0start q1 q2
x = y

x < y

x ≥ y

⊤

Figure 4.4: D2, identifying all words in which the first letter is largest, as seen in fig-
ure 4.3b.

Proof. This is a direct consequence of theorem 3.12.

Theorem 4.8 (closure of SDPA under Boolean operations). The set of languages repre-
sented by SDPA is closed under union, intersection and complementation.

Proof. The direct product set A × B of two SDPA A = (M,Q, q0, δ1, F1) and B =
(M,P, p0, δ2, F2) can be constructed as described in definition 3.11. To make the di-
rect product identify the intersection of L(A) and L(B), set the set of accepting states
to F∪ = F1 × F2. To make the direct product identify their union instead, choose
F∩ = (Q × F2) ∪ (F1 × P ). Because each word has exactly one complete run in A
resp. B, it will have one complete run in (A × B,F∪) or (A × B,F∩) with the desired
outcome.

To construct the complement of a SDPA A, simply turn all accepting states into
non-accepting states and all non-accepting states into accepting states. The resulting
automaton Ac identifies L(A)c, because

w ∈ L(A) ⇔ w terminates in an accepting state of A

⇔ w terminates in a non-accepting state of Ac

⇔ w /∈ L(A)c.

A direct product of two PA is constructed in quadratic time and, in the worst case,
causes a quadratic increase in the number of states. The complement can be constructed
in linear time.

Another minor result concerning the closure properties of SDPA is the following:

Proposition 4.9. Strongly deterministic PA are not closed under reversal.

Proof. Consider A2, which identifies all words whose last letter is largest. In figure 4.4, the
reversal of L(A2) is expressed using an SDPA. L(A2) itself, however, cannot be expressed
using an SDPA.

Assume for contradiction that such an SDPA A does exist and has n states. This
prove will make use of the observation that in every SDPA, whenever two words share
a prefix, the runs of the prefix have to be identical even if the words complete their
respective runs using different parameter assignments. Consider the sequence of words
((1, . . . , k))k∈N = (1), (1, 2), (1, 2, 3), . . . . For every i = 1, 2, . . . , let µi be a parameter
assignment such that Aµi accepts the word (1, . . . , i).

Then all prefixes of a word (1, . . . , i) will also complete runs in Aµi , and the runs
need to terminate in accepting states because A is assumed to be strongly deterministic.
Obviously, the terminating state q of the run of (1, . . . , i) has to be distinct from all states
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traversed by the prefix (1, . . . , i − 2): Otherwise, there would be a transition (q, φ, p)
exiting q and entering an accepting state p that is viable for some j < i, implying the
word (1, . . . , i, j) to complete an accepting run in A despite not being a part of L(A2).

Applying this observation to all prefixes of (1, . . . , i), Aµi must have at least i
2
states.

This leads to a contradiction as soon as i > 2n.

Remark 4.10. As a side note, the reversal result also holds for deterministic variable
automata (see the language of all words whose first letter appears more than once). Since
variable automata are not the focus of this work, the full proof will be omitted.

Aside from closure properties, we are interested in how SDPA hold up when mea-
sured against the usual, important decision problems. The universality, containment and
equivalence problems are undecidable for parametrized automata, so we hope for an im-
provement when restricted to SDPA. Indeed, all of these problems are decidable for SDPA
and the corresponding proofs are concise.

Theorem 4.11 (universality). Universality is decidable for SDPA.

Proof. An SDPA is universal if and only if all reachable states are accepting. An algorithm
for identifying reachable states is described in theorem 3.26, and the identified states can
easily be checked for non-acceptance.

Theorem 4.12. For two PA A and B, the containment problem L(A) ⊆ L(B) is decidable
if B is strongly deterministic.

Proof. Since B is strongly deterministic, we can construct the complement automaton
Bc. L(A) ⊆ L(B) ⇔ L(A) ∩ L(Bc) = ∅.

Corollary 4.13. For two SDPA A and B, the equivalence problem L(A) = L(B) is
decidable.

Proof. The containment problem is decidable, and L(A) = L(B) ⇔ L(A) ⊆ L(B) ∧
L(B) ⊆ L(A).

4.2 Applicability

The first section of this chapter suggests SDPA may be an attractive fragment of PA not
just with respect to complementation, but harder decision problems as well. However,
SDPA have been introduced in a very descriptive (rather than constructive) manner and
most proofs have been straightforward and effortless, therefore robbing us of the oppor-
tunity to learn more about the limitations of SDPA. We will only learn more about these
limitations by conducting a manual search.

In order to find out to what degree SDPA are actually applicable to the complemen-
tation problem, we need to take a closer look at some of their more specific properties.
This is in stark contrast to the more general results of the first section.

This section will start by answering questions related to the prevalence of SDPA, and
how they fit in the greater context of classes of PA encountered so far. Then, we will
investigate to which extent the approach of

1. determinizing a given PA,
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2. then complementing the resulting SDPA

makes for a viable strategy to complement arbitrary PA. For this purpose, we need to
solve two computational problems: The determinization process itself, and a method that
confirms whether a given PA is strongly deterministic.

Parametrized automata combine the properties of both symbolic automata and vari-
able automata, two very different approaches to languages over infinite alphabets and
therefore widely incomparable. For this reason, we need to pay greater attention than
usual to different notions of determinism, and use this opportunity for a brief review.

To elaborate, consider finite-state automata. An FSA is deterministic if every word
completes exactly one run (see definition 2.22). This definition is high-level and descrip-
tive, or semantic, meaning that it merely posits what property a deterministic FSA should
satisfy, instead of how a deterministic FSA should work. It describes the end goal without
explaining how to achieve said goal. A definition answering the “how” instead of only the
“what” is more valuable from a computational perspective, because it paves the way for
both understanding determinism and utilizing the concept in proofs to our advantage.

In the case of FSA, there is also a local, constructive, syntactic definition of determin-
ism stating an FSA is deterministic if and only if for every state and every letter, there is
exactly one exiting transition. This definition is local in the sense that each state can be
checked for determinism independently to obtain the greater picture; determinism in FSA
is not more than the sum of its parts. Both definitions of determinism are equivalent in
FSA, speaking for determinism in FSA being straightforward and intuitive. There is no
alternative definition for determinism in FSA that differs from our definition in a mean-
ingful way (barring the question whether deterministic FSA should be complete, which
is up to convention), and concepts such as ambiguity (only every accepted word needs to
complete exactly one run, see [12]) defer to determinism rather than compete with it.

Symbolic automata are comparable: The syntactic definition of determinism (for each
combination of a state and a letter, exactly one exiting transition has to be viable) and
the semantic definition (each word has to complete exactly one run) describe the same
property from different perspectives.

In variable automata, however, this approach starts to break down. The authors of
[10], who propose a semantic definition of determinism where each word completes exactly
one run1, quickly observe a VA can be non-deterministic even if its pattern automaton (an
FSA) is deterministic. The added layer of different variable assignments permits a word
to have different runs regardless. Determinism of the VA is obtained by “culling” the VA,
since a word that is accepted cannot be allowed to ever complete a run in a non-accepting
state. If the chosen variables do not lead the run of a word to an accepting state, the run
has to die.

Therefore, determinism of a VA and determinism of the pattern automaton rarely co-
incide. Even if they coincide, this implies the variable assignment does not meaningfully
influence the VA’s operations and the entire automaton can be replaced by some FSA
without the hassle of variables in the first place.

1The authors later introduce a syntactic definition, which relies on the tight parameter control provided
by VA and is therefore not applicable to PA.

51



Regarding PA, we have introduced two different notions of determinism. Determinism
per assignment is loosely based on determinism in SFA while strong determinism is based
on determinism in VA. We can and should examine how both concepts relate to one
another, and will observe similarities to the traits of determinism in VA.

Proposition 4.14 (determinism per assignment and strong determinism). If a PA A is
both deterministic per assignment and strongly deterministic, it is equivalent to a symbolic
automaton.

Proof. Let A be a PA that is both deterministic per assignment and strongly deterministic.
Let µ be an arbitrary parameter assignment. Since A is deterministic per assignment,
every word w ∈ D∗ completes a run in Aµ. Since A is strongly deterministic, no complete
run of w using any other parameter assignment µ′ can differ from w’s run in Aµ. Therefore,
L(A) = L(Aµ).

In conclusion, any parametrized automaton not equivalent to a symbolic automaton
(i. e., is parametrized in any meaningful way) cannot be strongly deterministic and deter-
ministic per assignment at the same time. This mirrors the observations made in variable
automata compared to their pattern automatons, now formally proven.

PA that are deterministic per assignment are rarely strongly deterministic, implying
that we would benefit from some flexibility when handling PA. Each notion of determinism
is useful in different situations, so instead of hoping that the PA we want to work on is
already strongly deterministic, we should rather shift our focus on whether we could,
theoretically, transform the PA into an equivalent SDPA.

We can already tell this is only possible to a limited extent, drawing on previous re-
sults. Since every SDPA can be complemented, and there are parametrized automata
that cannot be complemented, obviously some parametrized automata cannot be deter-
minized, i. e., they are not equivalent to any SDPA. It will now be shown that there are
even some complementable PA that cannot be determinized. The proof will provide a
counterexample of a PA that can be complemented, but not determinized.

q0start

y ≤ x ≤ y + 1

(a) A3, as seen in figure 3.1.

q0start q1 q2

⊤

x = y1

⊤
x = y2,

|x− y1| > 1

⊤

(b) The complement automaton Ac3.

Figure 4.5: A3 and a PA Ac3 identifying the complement of L(A3), showing that A3 can
be complemented.

Theorem 4.15. Strongly deterministic PA form a strict subset of complementable PA.
There are complementable PA that do not have a strongly deterministic equivalent.

Proof. Consider example A3. L(A3) is the language of all words whose letters can be
placed within an interval of length 1. A3 uses only one parameter y, one state, which is
marked as accepting, and one self-loop labeled y ≤ x ≤ y+1. If for a word w there exists
a parameter value µ(y) ∈ D describing the upper and lower bounds of the interval, the
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run terminates in an accepting state. If an unsuitable µ(y) is guessed, the run simply dies,
and therefore any words lacking such a µ(y) never terminate in an accepting position.

If we complete A3 by adding a second, non-accepting state entered upon failing this
guard, then any “wrong guesses” of µ(y) will lead to a non-accepting run, making the PA
non-deterministic.

In order to prove there is no SDPA describing L(A3), we prove there is no strongly
deterministic PA describing its complement language K = {w = (w1, . . . , wk) ∈ D∗ |
∃1 ≤ i < j ≤ k : |wi − wj| > 1}.

Consider the sequence of words ((1, 1
2
, . . . , 1

n
, 1 + 1

n−1
))1<n∈N, whose first few elements

are the following:

n = 2 (1, 1
2
, 2)

n = 3 (1, 1
2
, 1
3
, 1 + 1

2
)

n = 4 (1, 1
2
, 1
3
, 1
4
, 1 + 1

3
).

Assume that there is an SDPA A identifying K, and let A consist of k states. Each word
of the sequence has to be accepted by A upon reaching the last letter, and all runs of
prefixes have to terminate in non-accepting states. We will prove by induction that A
cannot be deterministic by showing that all prefixes have to end in states that are pairwise
distinct. This, in turn, proves A must have an unbounded number of states.

Claim: For each word (1, 1
2
, . . . , 1

n
, 1 + 1

n−1
), all runs of prefixes (1, 1

2
, . . . , 1

i
) where

i ≤ n terminate in non-accepting states that are pairwise distinct, implying that a run of
the word (1, 1

2
, . . . , 1

n
, 1 + 1

n−1
) traverses n+ 1 distinct states.

Base case: Let there be a configuration of parameters µ2 such that (1, 1
2
, 2) is accepted.

Then (1) and (1, 1
2
) cannot terminate in the same state, as otherwise (1, 2) would be a

word terminating in an accepting state despite not being part of the language. Conclude
that the automaton has at least 3 distinct states.

Induction step: Assume that the unique run of the word (1, 1
2
, . . . , 1

n−1
, 1 + 1

n−2
) tra-

verses n distinct states, using a parameter assignment µn−1. Now let µn be a parameter
assignment such that the word (1, 1

2
, . . . , 1

n
, 1 + 1

n−1
) completes a run.

Since A is strongly deterministic, for each prefix (1, 1
2
, . . . , 1

i
) where i < n, the runs in

Aµn−1 and Aµn have to coincide. We only need to prove that the unique run of (1, 1
2
, . . . , 1

n
)

in Aµn does not terminate in a state that has been previously traversed.
Assume for a proof by contradiction that there is an i < n such that the runs of

(1, 1
2
, . . . , 1

i
) and (1, 1

2
, . . . , 1

n
) terminate in the same state q. Then there is a transition

exiting q that leads to an accepting state upon reading the letter 1 + 1
n−1

, so the word

(1, 1
2
, . . . , 1

i
, 1+ 1

n−1
) completes an accepting run in Aµn . Since (1,

1
2
, . . . , 1

i
, 1+ 1

n−1
) is not

part of the language K, the runs of (1, 1
2
, . . . , 1

i
) and (1, 1

2
, . . . , 1

n
) have to terminate in

distinct states.
The final state is accepting and therefore cannot coincide with any state that has been

previously traversed. Therefore, the run of the word (1, 1
2
, . . . , 1

n
, 1 + 1

n−1
) traverses n+ 1

distinct states.
A run of the word (1, 1

2
, . . . , 1

k
, 1 + 1

k−1
) needs to traverse k+ 1 distinct states, contra-

dicting the assumption of A only having k states.
Using the closure properties of SDPA, we conclude there is no SDPA describing L(A3).
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q0start q1 · · · qi · · · qn+1
1

1
2

1
i

1
i+1

1 + 1
n−1

1
n

Figure 4.6: The proof, illustrated.

After establishing SDPA as a strict fragment of complementable PA, as a result de-
terminization of PA should consist of two steps: First, the PA must be established to be
determinizable in the first place. Then, an algorithm should be applied which constructs
an equivalent SDPA.

Unfortunately, we would be flying too close to the sun: These two steps combined
provide a means of solving the universality problem, which we know is undecidable for
PA.

Theorem 4.16. At least one of the following statements holds:

1. The problem of finding out whether a PA can be determinized is undecidable.

2. There is no algorithm which can compute an equivalent SDPA for any given (deter-
minizable) PA.

Proof. This theorem is a consequence of the undecidability of universality for general PA.
Assume that both statements are wrong. In that case, we can construct a Turing

machine M that takes a PA as input and returns either an equivalent SDPA, or returns
that such a SDPA does not exist. As seen in section 3.5 and specifically figure 3.8, an
SDPA U such that L(U) is universal can be easily constructed.

Now, M can be utilized to find out if an arbitrary PA A is universal: Run M on A.
If there is no equivalent SDPA, then A cannot be universal. If M returns an equivalent
SDPA S, we can easily check whether L(S) is universal. This contradicts the fact that
universality is undecidable for PA.

The section will be concluded with a question that has, so far, been overlooked. Given
an arbitrary PA, can we somehow confirm whether this PA is strongly deterministic?

There have been several situations already in which such a method would have been
useful. The decidability results in section 4.1 rely on the user already knowing whether
the PA in question are strongly deterministic. In the face of general determinization being
undecidable, the ability to confirm whether the goal is reached is an important partial
step in the right direction.

Strong determinism is composed of conclusiveness and completeness. We can therefore
investigate both of these properties in an isolated setting, starting with conclusiveness.

Proposition 4.17. Conclusiveness of a PA is decidable.

Proof. Let A = (M,Q, q0, δ, F ) be a PA. Let A×A be the set of direct product automata
of A with itself (importantly, the parameters in one copy of A need to be relabeled). In
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the direct product automaton (A×A,F ), let the set of accepting states be F = {(p, q) ∈
Q×Q : p ̸= q}. The run of a word in (A× A,F ) will terminate in F if and only if there
are two runs of w in A terminating in distinct states. Therefore, A is conclusive if and
only if (A× A,F ) is empty.

Given a conclusive PA, it is tempting to attempt to “complete” it (especially given the
not very promising results regarding completeness, which we will get to later). Maybe we
can make it complete and therefore deterministic by simply adding a few states and tran-
sitions? Unfortunately, we have already seen a counterexample of a PA that is conclusive,
yet cannot be determinized.

Corollary 4.18. Conclusive PA cannot always be determinized: There are conclusive PA
that are not equivalent to any SDPA.

Proof. Consider A3 once more: A3 is conclusive by virtue of only consisting of one state.
As shown in the proof for theorem 4.15, there is no SDPA that is equivalent to A3.

The problem with determinizing conclusive PA lies in the conflict between local and
global definitions of determinism: Completeness per assignment is obtained by adding a
“sink” state to which all runs are redirected that would otherwise die. Algorithmically,
this is achieved by looking at each state locally, constructing a formula by negating the
union of all formulae labeling exiting transitions, and using it to label a transition leading
from the state to the sink state. The sink cannot be left, expressed by the only exiting
transition leading straight back to the sink state and being labeled with ⊤.

Applying this to all states of a conclusive PA will, however, lead to a PA that is
deterministic per assignment. As has been already shown in lemma 4.14, a PA that is
deterministic per assignment is likely not strongly deterministic. Completeness per as-
signment is too much of an infringement on the delicate nature of strong determinism,
which is defined by the interplay of different parameter assignments.

These observations smoothly translate to the problem of checking for completeness
in general. A systematic, “localized” approach would check each state individually: For
every state, every letter and every parameter assignment, is there always a
viable exiting transition? It is the approach that works for FSA and SFA – and
therefore overapproximates the problem, since it actually checks for the much stricter
property of completeness per assignment. Complete PA are, in general, not complete per
assignment: If a run of a word fails using one parameter assignment, it may still terminate
when using a different parameter assignment “picking up the slack”.

If the described conditions are too strict to detect completeness reliably, and we do not
want to abandon the idea of a localized approach yet, maybe there is a way to relax the
conditions. We do not need a word to complete a run using every parameter assignment.
One parameter assignment is enough to ensure completeness. For every state and
every letter, is there always some parameter assignment permitting a viable
exiting transition?

Unfortunately, this adjusted, localized approach can fail on two fronts, because it will
both falsely identify complete PA as incomplete and falsely identify incomplete PA as
complete.
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q0start q1 q2

x = y ∧
x ≤ 5 x = y

⊤

(a) An example in which transitions are constricted by previous choices.

q0start

x ̸= y

(b) A PA which is only complete if the do-
main D is infinite.

q0start q1

⊤

⊤

(c) A PA which may be falsely identified as
incomplete, as no viable transitions exit q1.

Figure 4.7: Examples illustrating challenges of the completeness problem.

If the PA in question is not deterministic per assignment, the method fails to recog-
nize how a run may die on one path while terminating correctly when choosing different
transitions, causing complete PAs (as seen in figure 4.7c) to be misidentified as incomplete.

On the other hand, the path previously taken may impose constraints on the current
options for parameters, rendering some transitions unviable even if their guards are sat-
isfiable locally. Therefore, an incomplete PA may be falsely identified as complete. This
can be observed in figure 4.7a. The second transition, x = y, can be satisfied by every
letter when choosing µ(y) = x. However, state q1 can only be reached by first traversing
the transition labeled x = y ∧ x ≤ 5, constricting µ(y) to values not greater than 5.

Both types of error occur because the localized approach fails to take prior decisions
made during a run into account. The idea of checking each state in isolation for some
desired properties should therefore be abandoned in favor of a more “globalized” approach
that takes prior choices into account.

This gives rise to another issue, illustrated in figure 4.7b: It cannot be predicted how
often a transition needs to be traversed in order to find a word which cannot complete
a run. The pictured automaton accepts all words not containing a letter determined by
the parameter assignment. If the domain is infinite, such a letter can always be found
because each word only contains a finite number of (distinct) letters, and therefore the
PA is universal. If, however, D is finite, e. g., D = {1, 2, . . . , n}, the word 12 . . . n will
never complete a run. The length of a shortest word that does not complete a run is not
related to the number of states or number of parameters.

Since a transition may need to be traversed multiple times, it is not sufficient to iterate
through all non-looping paths in the automaton and perform satisfiability checks. Nor
can we put an upper bound on the length of the words that need to be tested. However,
these considerations help get a better estimate of the computability of the problem.

Lemma 4.19. The set of all incomplete PA is semidecidable.

Proof. We prove the statement by constructing an algorithm which, given an input PA
A, halts when it finds a word that does not complete a run in A. If no such word exists,
the algorithm runs forever.

For a n ∈ N, let there be n distinct variables x1, x2, . . . , xn that do not occur in
formulae of A. Let r = ((q0, r1, q1), (q1, r2, q2), . . . , (qn−1, rn, qn)) be a path of length n.
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Each formula ri may contain the free variable x, as well as k parameters {y1, y2, . . . , yk}.
We transform each formula ri by replacing x with the variable xi and denote the resulting
formula rxii . Therefore, a word w = w1w2 . . . wn can complete the run r if and only if the
formula

n∧
i=1

rxii (wi)

is satisfiable, with rxii (wi) implying that xi in ri is mapped to wi.
Since A contains a finite number of transitions, we can enumerate all distinct paths

of length n. Let Γn(A) be the finite set of all distinct paths of length n. To check if all
words of length n complete a run in A, we need to verify whether the formula

∀w1, w2, . . . , wn.
∨

r∈Γn(A)

n∧
i=1

rxii (wi)

is satisfiable. If it is not, we have found proof that A is not complete.
Iterating through all n ∈ N, we have obtained the desired algorithm.

The completeness problem may be closely related to the universality problem. A PA
is complete if and only if the PA resulting from marking all of its states as accepting is
universal. The conditions are not right to use the universality problem in a reduction to
prove that confirming completeness is undecidable. Likewise, this approach likely won’t
lead to an applicable method for identifying complete PA, even if universality only needs
to be shown for a very specific subtype of PA.

Conjecture 4.20. Deciding whether a PA is complete is undecidable. This also means
deciding whether a PA is strongly deterministic is undecidable.

The observations made in this section cement the impression of strong determinism
being a very unreliable criterion when aiming to complement PA. We have seen that SDPA
have pleasant closure properties and the most important decision problems are decidable,
however these results rely on the user already knowing whether the PA in question is
strongly deterministic. When attempting to transform an arbitrary PA into an SDPA,
we quickly run into the undecidability barrier. There are also complementable PA that
are not equivalent to any SDPA.

Therefore, SDPA are most useful when they are already given and do not have to be
constructed manually, since then we can fully benefit from the very efficient complemen-
tation algorithm described in this section. If the starting point is not an SDPA, however,
we should turn to different methods that will be explored in chapter 6.

57



Chapter 5

Parameter Management

In previous sections, investigations of the properties of the parameter assignment itself
have been very limited. The relationship between parameter assignments and words has
been unidirectional: For a given word which is part of a PA’s language, there exists a
parameter assignment such that the word completes a run. However, this relationship also
works in the other direction. For a given parameter assignment, which words complete
runs, and which runs terminate in accepting states?

We also wish to be able to make more nuanced statements about the parameter as-
signment instead of being constrained to existence results, which may open the way for
new approaches with respect to the complementation problem. Compared to PA, VA have
much tighter “control” over their parameters, as all parameters relevant for the run of a
word need to correspond directly to letters of the word. In a PA, the parameter values do
not have to correspond to letters of the word directly, and often there is more than one
parameter assignment such that a word completes an accepting run.

There is much to explore. Parameter assignments can be categorized. For example,
in an SDPA, the set of all parameter assignments Θ splits in two subsets for every word
w: The parameter assignments for which w does not complete a run, and those for which
it does. In the latter subset, all runs have to be identical.

This section seeks to establish concepts and vocabulary allowing for a more fine-grained
description of the parameter assignment and its properties. We will contend ourselves with
a cursory investigation.

5.1 Strict Parameters

Example 5.1. Consider A2 and A3 in figure 5.1. As seen before, A2 is deterministic per
assignment but not strongly deterministic. A3 is neither, as words outside of L(A3) will
never complete a run.

Observe that for every w ∈ L(A2), there exists only one parameter assignment µ such
that w ∈ L((A2)µ). Namely, µ(y) has to coincide with the last letter of w. The choices in
A3 are less constrained, as for many words there is more than one parameter assignment
using which the word completes a run. Let w ∈ L(A3) such that the smallest letter of w
is z and the largest letter of w is z + ε where ε < 1. Then every parameter assignment
µ where µ(y) ∈ [z + ε − 1, z] will lead to an accepting run. The parameters of A2 are
“stricter” than those of A3, in the sense that the “range” of parameters accepting a word
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q0start q1

x < y

x = y

(a) A2

q0start

y ≤ x ≤ y + 1

(b) A3

q0start q2
x = y

x < y

(c) AR2

Figure 5.1: Three automata that display different levels of “control” over their parameter
choices.

is smaller.

This observation is limited to accepting runs, but can be generalized to all runs. In
A2, the run of a word w ∈ L(A2) can terminate in q0 or q1, depending on the parameter
assignment. Up until the last transition, the parameter y does not need to be assigned
a fixed value as long as µ(y) is greater than all upcoming letters. The run’s final state
is decided upon the last transition, depending on whether µ(y) coincides with the last
letter of w or not. Up until that point, we do not know whether the run will terminate
in q0 or q1. In contrast, AR2 will “force” the assignment of y to the first letter of the
input word. This kind of pressure on the parameters appears to be crucial for strong
determinism. After leaving the initial state, AR2 will act like a symbolic automaton on
the remaining suffix of the word because µ(y) has been predetermined. In contrast, the
transition (q0, x < y, q0) in A2 is “too loose”, permitting every word to complete a run
terminating in q0 as long as µ(y) is larger that the largest letter of the word.

The latter notion can be formalized.

Definition 5.2. A PA A is strict (or has strict parameters) if for every word w ∈ D∗\{ε},
there exists at most one parameter assignment µ such that |pµ(w)| > 0, i. e., w completes
a run in A.

A PA A is strict-when-accepting if for every word w ∈ L(A) \ {ε}, there exists exactly
one parameter assignment µ such that |paµ(w)| > 0, i. e., w completes an accepting run in
A.

The empty word ε is excluded from the definition because it trivially completes the
“empty run” using every parameter assignment.

Example 5.3. The automaton A3 is neither strict nor strict-when-accepting, A2 is strict-
when-accepting but not strict, and AR2 is both strict and strict-when-accepting.

Example 5.4 (strictness-when-accepting in PA with more than one variable). For a fixed
number k, let Lk be the language of all words composed of at most k distinct letters, and
A4 be a PA identifying Lk.

q0start

x = y1 ∨ x = y2 ∨ · · · ∨ x = yk

(a) A PA for Lk, A4.

q0start

φk

(b) A4 with alternative notation.

Figure 5.2: A PA A4.
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We will attempt to transform A4 into a PA that is strict-when-accepting.
The PA A4 has k parameters at its disposal. If a word w is composed of l ≤ k

distinct letters {a1, a2, . . . , al}, then it is accepted using any parameter assignment µ
whose image contains all of {a1, a2, . . . , al}. However, A4 is not strict-when-accepting,
since any permutation of µ will also accept w. We denote φi as a shorthand for the
formula x = y1 ∨ x = y2 ∨ x = yi.

A first step towards strictness-when-accepting could be to demand that µ(y1) corre-
spond to the first distinct letter in w, µ(y2) to the second distinct letter (i. e., the first
letter that is not equal to µ(y1)) and so on.

q0start q1 · · · qk
x = y1

x = y1

x = y2 ∧
¬φ1

x = yk ∧
¬φk−1

φk

Figure 5.3: A PA for Lk after modifications.

Observe that this step has led to a k-fold increase in the number of states. Also, the
PA is not strict-per-assignment. Words with fewer than k distinct letters never enter state
qk, so µ(yk) never needs to be defined and can be assigned arbitrarily. This can be fixed
by forcing the first k− l parameters to be assigned the first letter of a word with l distinct
letters.

q0start · · · qk−1 qk
x = y1

x = y1 ∧ · · · ∧ x = yk−1

x = y1 ∧ · · · ∧ x = yk

x = yk−1 ∧
¬φk−2

x = yk ∧
¬φk−1

φk−1 φk

Figure 5.4: A PA for Lk that is strict-when-accepting.

Note that in the final version, only q0 and qk are accepting states. The run of a word
with l < k distinct letters can only “reach” qk if y1 through yk−l are assigned the first
letter.

5.2 Strictness and SDPA

Strictness is a useful property, since it can help out in a situation that has previously
appeared to be a dead end. In general, conclusive PA cannot be transformed into SDPA.
However, this changes if the PA has strict parameters.
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Theorem 5.5. Let A be a conclusive PA with strict parameters such that every word of
length 1 completes a run. Then there exists an SDPA equivalent to A.

Proof. Let A = (M,Q, q0, δ, F ) be a conclusive PA with strict parameters, and w a word
that does not have a terminating run in A. If such a w does not exist, then A is already
complete and the proof is done. Also w cannot be the prefix of a word that has a complete
run.

Let v be the longest prefix of w such that v has a complete run in A. Let µ be the
corresponding parameter assignment, and q be the state in which the run of v terminates.
Since A is conclusive, q is well-defined. Then there is a letter a such that va is a prefix of
w and va does not complete a run in A, since we assumed v to be the largest prefix of w
that completes a run.

Then create a (non-accepting) dumpster state p /∈ Q, a transition (p,⊤, p) and a
transition (q, φ, p) where φ is the negation of the conjunction of all other guards exiting
q, namely φ = ¬

∨
ψ∈S ψ for S = {ψ | (q, ψ, s) ∈ δ for some s ∈ Q}. The state q is now

“locally complete”, in the sense that for every letter and every parameter assignment,
there has to be a viable exiting transition.

We also need to avoid q being the initial state, since the empty word is exempt from
needing to be accepted by a single parameter assignment. Therefore, if q = q0, let there
be a new state q′0 /∈ Q ∪ {p} that is accepting if and only if q0 is accepting, and a set of
transitions T = {(q′0, φ, s) | (q0, φ, s) ∈ δ}.

Let

� A′ = (M,Q ∪ {p}, q0, δ ∪ {(p,⊤, p), (q, φ, p)}, F ) if q ̸= q0,

� A′ = (M,Q ∪ {p, q′0}, q′0, δ ∪ {(p,⊤, p), (q, φ, p)} ∪ T, F ) if q = q0 and q /∈ F , or

� A′ = (M,Q ∪ {p, q′0}, q′0, δ ∪ {(p,⊤, p), (q, φ, p)} ∪ T, F ∪ {q′0}) if q = q0 and q ∈ F .

The resulting PA A′ is still conclusive, which needs to be proven. Assume by contra-
diction that there is a word u ∈ D∗ such that u completes two distinct runs in A′. A′

is obviously conclusive per assignment, since A was conclusive per assignment and, for
every fixed parameter assignment, the recently added transition from q to p is mutually
exclusive with any other transition leaving q. The state q′0, if added, does not violate
conclusiveness because q0 does not violate conclusiveness. Therefore, the two runs must
have occurred using two different parameter assignments µ1, µ2. The original automaton
A was conclusive, so at least one of the runs had to traverse one of the newly added
transitions and terminated in p. Every transition before that point occurred in A and
has to coincide for both parameter assignments. Thus, there is a prefix of u whose runs
lie entirely in A, and since A was assumed to have strict parameters, the prefix has to be
empty. This contradicts the fact that q is not the initial state of A′. Therefore, such a u
cannot exist. The same argument preserves strictness in A′.

This procedure can be applied iteratively. Note that a new initial state q′0 only needs
to be added once (although not necessarily in the first iteration), because words of length
1 always complete a run and there are no loops back to q′0. We select a new word w2 that
does not complete a run in A′. Its longest prefix v2 that completes a run cannot terminate
in q, since q was “locally complete”. Let the run of v2 terminate in some state q2. Since
p has already been added in the first step, we only need to add the transition (q2, φ2, p)
where φ2 = ¬

∨
ψ∈S ψ for S = {ψ | (q2, ψ, s) ∈ δ for some s ∈ Q}. Rinse and repeat.

61



q0start q1
x = y

x < y

(a) AR2 , a PA that is conclusive and
incomplete.

q0start q1 p
x = y

x < y

x ≥ y

⊤

(b) D2, a PA that is equivalent to AR2 and
strongly deterministic.

Figure 5.5: An example of a strict, conclusive PA that has been transformed into an
SDPA.

Since there is a finite number of states and the number of states that can be modified
decreases after each step, this method terminates.

The challenge of this method lies in finding words which do not complete a run, related
to the completeness problem. Fortunately, this issue can be entirely circumvented: Every
original state of A can be “locally completed” without causing the resulting PA to become
inconclusive. Let A′ be the automaton obtained by first making A deterministic per
assignment and then adding the new initial state q′0 as described in the proof. Every run
of every word can only exit q′0 using one unique parameter assignment, and the remainder
of the run occurs in a PA that is conclusive per assignment. Therefore, each run in the
SDPA A′ splits into two phases: An “assignment phase” in which the parameter values
needed for a complete run are determined, and a “stable phase” afterwards where the run
operates on a subsection of A′ that is deterministic per assignment.

q0start q1x = y

⊤

Figure 5.6: A PA A fulfilling all conditions of theorem 5.5.

Example 5.6. The PA A seen in figure 5.6 accepts all words of odd length whose first
letter appears in every odd position. Every word using every parameter assignment has
to take the path q0 - q1 - q0 - q1 - . . . assuming the run does not die, so A is conclusive.
Every word w ∈ D of length 1 is accepted by Aµ where µ(y) = w. The PA is strict, since
a word w1w2 . . . wn only completes a run when µ(y) = w1.

All words of length 0, 1 or 2 complete a run. A word that does not complete a run is
(1, 2, 2). The longest prefix of w that completes a run is (1, 2) and the run terminates in
q0. Therefore, both a state p and a state q′0 need to be added.

q′0start q1 q0 p
x = y

x = y
x ̸= y

⊤ ⊤

Figure 5.7: A′ after one step of completing. For improved legibility, the positions of q0
and q1 have been swapped.

The resulting PA A′ is complete, therefore we are finished after one step.
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Note that SDPA are not necessarily strict. Two examples can be seen in figure 5.8:
Both automata are strongly deterministic, but are not strict for different reasons. In
the first automaton, the parameter y2 is not “needed” for words of length 1 and can
therefore be assigned arbitrarily. In the second, there is more than one possible choice
for y. Strong determinism is retained because in all subsequent transitions that use y, all
potential choices for µ(y) have equivalent properties.

Both examples can be transformed into PA that are strict, which we will look into
next.

q0start q1 q2
x = y1

x = y1
x = y2 ∧
x ̸= y1

⊤

q0start q1 q2
x%2 = y%2

x%2 = y%2

x%2 ̸= y%2

⊤

Figure 5.8: SDPA which are not strict.

q0start q1 · · · qk qk+1

x = y1

x = y1

x = y2 ∧
¬φ1

x = yk ∧
¬φk−1

φk

¬φk

⊤

Figure 5.9: A strongly deterministic complement automaton for A4.

Remark 5.7. Remember the automaton A4 from example 5.4, which is complementable:
We can obtain a complement PA for Lk by starting with the PA from figure 5.3, mak-
ing all states non-accepting and then adding a new accepting state p and the transitions
(qk,¬φk, p) and (p,⊤, p). State qk is only entered when k distinct letters have been en-
countered, allowing us to transition to an accepting state when a new, previously unknown
letter appears. The resulting automaton can be seen in figure 5.9.

Interestingly, there are parallels to the observations made after theorem 5.5. The
theorem states that if a PA A is conclusive, has strict parameters and every word of
length 1 completes a run, it can be transformed into an SDPA A′ by making the original
PA deterministic per assignment and adding a new initial state q′0, which is a copy of the
old initial state and all of its exiting transitions.

We have observed that each run through A′ splits into two “phases”. In the first
phase, which we dubbed the “assignment phase”, the parameters needed for a complete
run are determined. In the second phase, or the “stable phase”, the remainder of the
word runs through a subsection of A′ that is deterministic per assignment. The two
phases are directly reflected by the layout of A′: The second phase, by definition, occurs
in the section of A′ that was obtained by making the original PA A deterministic per
assignment. The first phase consists of a single transition exiting the initial state q′0
(which can never be reentered) and entering one of the states of the section used in the
second phase. Therefore, A′ can be divided into two separate subsections which directly
correspond to the two phases. It is therefore more accurate to speak of an “assignment
section” and a “stable section”.
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q′0start q1 q0 p
x = y

x = y
x ̸= y

⊤ ⊤

Figure 5.10: An example of a PA A′, as seen in example 5.6.

In the example depicted in figure 5.10, the assignment section consists of the state q′0
and its exiting transition (q′0, x = y, q1). The remainder of A′ is the stable section.

This callback to the earlier theorem is relevant because we can observe the same divi-
sion into two sections in Ac4. In stark contrast to A′, most of Ac4 is part of the assignment
section. The stable section begins with state qk: Upon entering qk, all parameter values
have been determined, and the section of the automaton that is reachable from qk is
deterministic per assignment. The preceding states q0 through qk−1 and all transitions
exiting those states serve to identify suitable parameter assignments.

Two important conclusions can be drawn from observing Ac4: The split into an assign-
ment section and a stable section can also be observed in SDPA that are not strict, and
the assignment section can have arbitrary size.

It remains an open question whether every SDPA has this structure.

5.3 Are Strict Parameters Obtainable?

We have seen how strictness can help out when determinizing PA, yet the conditions
which need to be met seem very oppressive. In the following subsection, the prevalence
of both strictness and strictness-when-accepting will be examined.

Every strict PA is strict-when-accepting, but not every PA which is strict-when-
accepting is strict. The question remains whether every strict-when-accepting PA can
be transformed into a strict PA, and whether every arbitrary PA can be transformed
into a strict or strict-when-accepting PA. The subset relations in question are depicted in
figure 5.11.

Theorem 5.8. There are PA that are not equivalent to a strict PA.

Proof. Let L2 = L(A2) be the language of all words in which the last letter is strictly
largest. Assume that there is a strict PA A such that L(A) = L2.

Since A is strict, for every w, v ∈ L(A) where v is a prefix of w it holds that w and
v must be accepted by the same parameter assignment. We will construct a sequence of
words using this property to prove A cannot have a finite number of states.

Consider the sequence of words ((1, 2, . . . , n))n∈N, whose first few elements are the
following:

n = 1 (1)
n = 2 (1, 2)
n = 3 (1, 2, 3).

Since (1) ∈ L2 and (1, 2) ∈ L2 and (1) is a prefix of (1, 2), there exists a unique µ ∈ Θ
such that both (1) and (1, 2) complete accepting runs in Aµ. While A is strict, we cannot
assume it is conclusive, so there may well be more than one possible run which (1) and
(1, 2) can complete in Aµ. This complicates the proof.
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Strict Parametrized
Automata

Strict-When-Accepting
Parametrized Automata

Parametrized Automata

Figure 5.11: Relations between the different classes of parametrized automata. The
question remains whether the represented inclusion relations are strict up to equivalence
of automata: Is every PA equivalent to a PA that is strict or strict-when-accepting, and
are there PA that are strict-when-accepting but not equivalent to a strict PA?

However, it can be deduced in the accepting run of (1, 2), the last transition taken
cannot be a self-loop. Let this transition be labeled (q′1, φ1, q2), where q2 is an accepting
state, q′1 is a terminating state of a run of (1) and φ permits the letter 2. If q′1 = q2, there
would be a self-loop from and to the final, accepting state that can be traversed by the
letter 2, causing the word (1, 2, 2) to be falsely accepted. Therefore, there are runs of (1)
and (1, 2) terminating in distinct states, meaning that A consists of at least two states. It
does not matter whether, in this particular case, the run of (1) terminates in an accepting
state or not.

This principle holds for the accepting run of (1, 2, 3) as well: Let (q′2, φ2, q3) be its last
transition, where q3 is an accepting state, φ2 permits the letter 3 and q′2 is a terminating
state for a run of (1, 2). The same line of reasoning as above enforces q′2 ̸= q3. Yet now,
we can also deduce q′2 ̸= q′1, because q

′
2 is a terminating state for a run of (1, 2) and there

is a transition from q′1 to the accepting state q2 which permits the letter 2, leading to a
falsely accepting run of the word (1, 2, 2). Finally, q′1 ̸= q3 holds because otherwise, the
word (1, 2, 3, 2) would have a falsely accepting run. The automaton A therefore needs to
have at least 3 states, because the states q′1, q

′
2 and q3 are all pairwise distinct.

To generalize this observation to all n, let q′n−1 be the second-to-last state of an
accepting run of (1, 2, . . . , n). The state q′n−1 cannot be equal to q′i−1, the second-to-
last state of an accepting run of any other prefix (1, 2, . . . , i), because otherwise the word
(1, 2, . . . , n− 1, i) would have a falsely accepting run.

Each word (1, 2, . . . , n) has to be accepted by a PA with at least n states, proving
there is no upper limit on the number of states of A. Therefore, A cannot exist.

Since A2 is strict-when-accepting, this proves strict PA form a non-trivial subset of
both PA and strict-when-accepting PA.
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· · ·start q′1 q2

· · ·start · · · q′2 q3

· · ·start · · · · · · q′3 q4

· · ·start · · · · · · · · · q′4 q5

1 2

1 2 3

2

1 2 3 4

3

2

1 2 3 4 5

4

3

2

Figure 5.12: The proof, illustrated by a “flattened” depiction of the different runs. Each
row represents the accepting run of a word (1, 2, . . . , n). Different labels may refer to the
same state, even within a run. States which are proven to be distinct are marked in red,
with dashed lines represent transitions that lead to falsely positive, accepting runs.

Next, the relationship between general PA and PA that are strict-when-accepting
should be investigated. For this purpose, we will use a few examples to gauge the level of
difficulty in transforming arbitrary PA into PA with strict parameters.

Example 5.9. The PA A3 is neither strict nor strict-when-accepting, but we can at-
tempt to transform A3 into a PA that is strict-when-accepting. As observed earlier, for
every word whose maximum distance of letters is smaller than 1, there is a range of
parameter assignments such that the word is accepted. In order to make the PA strict-
when-accepting, we can attempt to restrict this range to one value. For example, a PA
can be constructed which accepts the words of L(A3) if and only if y assumes the value
of the smallest letter.

q0start

y ≤ x ≤ y + 1

(a) A3 from figure 3.1.

q0start q1 q2

x = y

y < x ≤ y + 1

y < x ≤ y + 1

x = y

y ≤ x ≤ y + 1

(b) A PA equivalent to A3 that is strict-when-accepting.

Figure 5.13: Example 5.9.

Every word except for the empty word can only be accepted by state q2, which is
only entered if the current letter equals µ(y). If there is a letter x < µ(y), the run dies,
ensuring µ(y) has to be the minimum. If µ(y) is a lower bound of the input letters but
not a minimum, the run terminates in state q1. Therefore, any word w ∈ L(A3) \ {ε} is
only accepted by the single parameter assignment µ(y) = min{wi | wi is a letter of w}.
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So far, all of the considered examples can be transformed into PA that are strict-when-
accepting.

We have reason to believe that not every PA can be transformed into an equivalent
PA which is strict-when-accepting. Consider L1, the language of of all unsorted words
introduced in theorem 3.4. The automaton A1 in figure 3.1 is neither strict nor strict-
when-accepting, since runs of words with multiple instances of disorder (i. e., multiple
indices i < n such that wi > wi+1 for a word w = w1w2 . . . wn ∈ D∗) have multiple
opportunities to transition to the accepting state. Intuitively, a PA A′

1 for L1 that is
strict-when-accepting would have to reliably pick out the same instance of disorder in
every accepting run. This means that A′

1 needs to keep track of previous and/or upcoming
instances of disorder. If, for example, A′

1 were to always transition to an accepting state
upon the first instance of disorder, it would be able to identify prefixes which are entirely
sorted. As already shown, a PA accepting exactly all sorted words does not exist. We
will not provide a formal proof.

Conjecture 5.10. There are PA not equivalent to a PA which is strict-when-accepting.

Without digging too deep, we can formalize a few final thoughts on this section.
For instance, it appears that non-complementability of L1 by a PA is crucial for the
proof that L1 cannot be identified by a PA that is strict-when-accepting. Both a PA for
the complement of L1 and a PA for L1 which is strict-when-accepting appear to need
“too many comparisons between letters” for a PA to handle. Moreover, all examples of
complementable PA that have been studied so far can be made strict-when-accepting. We
therefore posit there is a connection.

Conjecture 5.11. Every complementable PA is equivalent to a PA that is strict-when-
accepting.

Conjecture 5.12. Every PA that is strict-when-accepting can be complemented.

Since this subject has the potential to eat a lot of time, we will leave further investi-
gations to future researchers. As a first step, the statements could be proven for variable
automata: The concept of strictness can be transferred to VA, which simultaneaously
permit tighter control of the parameters.

The following chapter will return to the task of finding subclasses of PA which are
easy to complement.
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Chapter 6

Complementable Normal Form

q0start

y ≤ x ≤ y + 1

(a) The PA A3 first seen in fig-
ure 3.1.

q0start q1

q2 q3

y < x ≤ y + 1

x = y

x > y + 1 x > y + 1

y ≤ x ≤ y + 1

x > y

x = y

x ≥ y

(b) A PA for L3 in complementable normal form. State
q3 identifies the complement language.

Figure 6.1: Two automata for the language L3 of words whose letters fall within an
interval of length 1.

6.1 Idea and General Considerations

In an SDPA S = (M,Q, q0, δ, F ), the set of states splits into two disjoint subsetsQ = F∪C
such that all words whose runs terminate in F are part of the language L(S), and all words
whose runs terminate in C are part of the complement L(S)c. Our new approach is to
relax this notion, and introduce a new type of parametrized automaton in which the set of
states Q splits into three disjoint subsets Q = F ∪C ∪W . A word is part of the language
if it has a run terminating in F , or part of the complement if it has a run terminating in
C. If a run terminates in W , we do not obtain any information about whether a word is
part of the language or its complement.

A different approach to the same idea is the following: Consider a PA A and a word
w ∈ L(A). A run of w in A only terminates in an accepting state if a “suitable” parameter
assignment has been chosen. If the parameter assignment does not permit the word to
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complete a run in an accepting state, two things may happen: Either the word does not
complete a run at all, or the run terminates in a non-accepting state q.

In the latter case, this means the state q is somewhat ambiguous. If a run terminates
in q using a parameter assignment µ, we cannot tell whether the corresponding word is
actually not in the language or whether µ was merely an unsuitable parameter assignment.
We cannot construct a PA for the complement by turning all non-accepting states into
accepting states, because then q would falsely accept words that are not part of the
complement.

We are therefore looking for a way to assess the “suitability” of a parameter assignment
for a specific word. Ideally, this method should be integrated into the PA in question by
creating a subset of states that can only be reached by a word if the parameters are deemed
“suitable”. That way, if the parameters are “suitable” and the run still terminates in a
non-accepting state, we can be sure the word is not part of the language.

Both approaches converge beautifully: We are looking for a PA A = (M,Q, q0, δ, F )
with a partition Q = F ∪ C ∪W of the set of states such that a run of a word can only
terminate in the states in F (accepting L(A)) and C (accepting L(A)c) if the parameter
assignment has been deemed suitable. If the parameter assignment is not suitable, the
run will terminate in W . We say such a PA is in complementable normal form.

Definition 6.1 (complementable normal form). A complementable PA A = (M,Q, q0, δ,
F ) is in complementable normal form (called a CFPA) if there is a subset Fc ⊆ Q\F such
that the automaton C = (M,Q, q0, δ, Fc) identifies the complement of A, i. e., L(C) =
L(A)c. States that are not in F or Fc are called weak states.

Example 6.2. Every SDPA is in complementable normal form. In this case, every non-
accepting state is part of Fc. There are two differences between SDPA and CFPA: In an
SDPA, F ∪ Fc = Q, while a CFPA may contain additional states that do not belong to
either set. Additionally, while both types of automaton are complete, a CFPA does not
have to be conclusive or even deterministic per assignment.

After having locked down a formal definition of CFPA, their properties should now be
investigated.

While the inclusion of weak states seems like a minor adjustment, it provides a crucial
advantage of CFPA over SDPA. Theorem 4.15 shows that not every complementable PA
can be determinized. But as it turns out, every complementable PA can, in fact, be
brought into complementable normal form.

Theorem 6.3. For every complementable PA, there is an equivalent CFPA.

Proof. Let A = (M,Q, q0, δ, F ) be a PA and Ac = (M,P, p0, δc, Fc) be the complement
automaton of A. Assume without loss of generality that Q ∩ P = ∅. Then A and
Ac can be linked via an ε-transition similar to the construction used for the union of
two automata. Let s be a new state, such that s /∈ Q and s /∈ P . The PA A′ =
(M,Q ∪ P ∪ {s}, s, δ ∪ δc ∪ {(s, ε, q0), (s, ε, q0)}, F ) is equivalent to A and (M,Q ∪ P ∪
{s}, s, δ ∪ δc ∪ {(s, ε, q0), (s, ε, q0)}, Fc) is equivalent to Ac. Therefore, A′ is a CFPA.

The theorem provides an upper limit on the size of a CFPA: Let n be the size of Q
and m be the size of P . Then there exists a CFPA equivalent to A with no more than
n+m+ 1 states.
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6.2 Construction of Complementable Normal Form

q0start q1

y ≤ x ≤ y + 1

x < y ∨
y + 1 < x

⊤

(a) A PA for L3 that is deterministic
per assignment, named ⟨A3⟩.

p0start p1 p2
x > y

x = y

x > y

x = y

x ≥ y

(b) A suitable Skolem automaton B.

(q0, p0)start (q0, p1) (q1, p2)

(q0, p2)

(q1, p1)

y < x ≤ y + 1

x = y

x > y + 1

y < x
x ≤ y + 1

x = y

x > y + 1

y ≤ x ≤ y + 1

x > y + 1

x ≥ y

x > y

x = y

(c) A synchronized product of both automata, which accepts the complement of L3.

Figure 6.2: Construction of a CFPA that is equivalent to the automata in figure 6.1.

It is likely hard to prove whether a PA is in complementable normal form. On the
one hand, this would easily allow to identify whether a PA is strongly deterministic, since
an SDPA is a conclusive CFPA such that F ∪ Fc = Q. On the other hand, a CFPA is
complete by definition, and checking for completeness is another open problem.

Conjecture 6.4. Deciding whether a PA is in complementable normal form is undecid-
able.

However, there are promising results regarding the construction of a CFPA. As de-
scribed in the introduction to this chapter, we are looking for a way to determine the

70



“suitability” of parameter assignments. Consider the PA in figure 6.2a. The run of any
word w ∈ L(⟨A3⟩) will terminate in an accepting state if µ(y) equals the smallest letter in
w. We will exploit the contrapositive of this statement: If the run of a word v terminates
in a non-accepting state and µ(y) equals the smallest letter of v, then v cannot be a part
of L(⟨A3⟩).

In order to formalize and then generalize this ansatz, we will introduce two new con-
structions. One are Skolem automata: Universal PA which accept any word, but only
permit accepting runs if the parameter assignment fulfills certain conditions. For exam-
ple, the PA B in figure 6.2b only accepts a word w if the parameter y is assigned the
smallest letter of w.

The second is the synchronized product, which works similarly to the direct product
except that it allows parameters to be assigned dependently. A synchronized product of
⟨A3⟩ and B only uses one parameter y, which means that the constrictions imposed on µ
by B will influence a word’s run in ⟨A3⟩. We are now able to identify words that complete
a run in a non-accepting state in ⟨A3⟩ while µ(y) equals the smallest letter of the word,
because these words will have a run terminating in the state (q1, p2) of the synchronized
product.

In figure 6.2c, all product states (q, p) where both q and p are accepting states in
their respective parent automata are marked violet . These states are accepting states
for the language L3. The product state (q1, p2) is marked blue : The state q1 in ⟨A3⟩ is
non-accepting while p2 is accepting in B. The product state accepts exactly the language
Lc3. Product state (q0, p1) exists because some words w ∈ L3 may be accepted by ⟨A3⟩
even if µ(y) doesn’t equal their smallest letter. It is composed of an accepting state of
⟨A3⟩ and a non-accepting state of B, and marked in red . The PA can accept both L3

and its complement and is therefore a CFPA.
Note that this was only a rough, example-driven outline of the idea behind constructing

CFPA. Next, synchronized products and Skolem automata will be defined formally and
illustrated by more examples before we move to combine both concepts into a method for
obtaining CFPA.

Definition 6.5 (synchronized product). Let there be two PA A = (M,Q, q0, δA, FA)
and B = (M,P, p0, δB, FB) whose parameter sets may intersect, i. e., YA ∩ YB ̸= ∅.
Then, analogously to the direct product, define the set of synchronized product automata
A⊗B = {(M,Q× P, (q0, p0), δ, F ) | F ⊆ Q× P} such that δ = {((q, p), φ1 ∧ φ2, (q

′, p′)) |
(q, φ1, q

′) ∈ δA, (p, φ2, p
′) ∈ δB}. The parameter set of A⊗B is YA ∪ YB.

A direct product has been useful whenever we wanted to observe the terminating
states of a word in two or more independent situations. For example, when computing
the intersection, a direct product answers the question: “Can w terminate in accepting
states of both parent automata?”. A direct product also tells whether a PA A is conclusive,
by answering the question: “Can w terminate in two distinct states of A?”. Since we do
not want the word’s run in one automaton to be influenced by the word’s run in the other
automaton, it is crucial that the parameter sets of both PA be disjoint. We do not care
about the parameters themselves, which only have to be modified at all if they threaten
to interfere with the intended purpose of the direct product, like a malfunctioning tool.

A synchronized product has a very different relationship with the parameters of the
parent automata and answers a very different set of questions. By allowing the parameter
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sets to intersect or even coincide, the parent automata can no longer operate indepen-
dently. The parameter choices in one parent automaton will influence the viability of
transitions in the other parent automaton. As such, we can use synchronized products
to impose additional constraints on transitions and parameters. In the context of CFPA,
synchronized products will answer the question: “Can w terminate in an accepting state
of one parent automaton, while parameter choices are restricted by the other parent au-
tomaton?”.

Example 6.6. Consider the following PA:

q0start q1
x = y

⊤

(a) A universal SDPA E1.

p0start

x ≤ y

(b) A universal SDPA E2.

Figure 6.3: Examples of universal SDPA.

Both E1 and E2 are universal SDPA. E1 accepts words whose first letter corresponds
to y, and E2 accepts words whenever y is an upper bound for the letters in the word.

Now, compare the synchronized and the direct product of E1 and E2. In this example,
choose F to be the set of product states where both original states are accepting.

(q0, p0)start (q1, p0)

x = y ∧
x ≤ y′

x ≤ y′

(a) (E1 ×E2, F ), with the parameter of E2

relabeled to y′.

(q0, p0)start (q1, p0)
x = y

x ≤ y

(b) A synchronized product automaton
(E1 ⊗ E2, F ).

Figure 6.4: A comparison of direct and synchronized product automata of E1 and E2.

The direct product (E1×E2, F ) is a universal SDPA, similar to both parent automata.
In order to allow both automata in the product to operate independently, the parameter
y needs to be renamed to y′ in E2. In the synchronized product (E1 ⊗ E2, F ), however,
the parameter y is explicitly not renamed and needs to fulfill the constraints imposed by
E1 and E2 at the same time. Therefore, (E1 ⊗ E2, F ) only accepts words in which the
first letter is largest. (E1 ⊗ E2, F ) is neither universal nor strongly deterministic.

Example 6.7 (intersection in direct and synchronized product). Let there be two PA
A = (M,Q, q0, δA, FA) and B = (M,P, p0, δB, FB) with identical parameter sets YA = YB.
Then

w ∈ L((A×B,FA × FB)) ⇔ ∃µ, µ′ ∈ Θ : w ∈ L(Aµ) ∧ w ∈ L(Bµ′), but

w ∈ L((A⊗B,FA × FB)) ⇔ ∃µ ∈ Θ : w ∈ L(Aµ) ∧ w ∈ L(Bµ).
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In other words, L((A×B,FA × FB)) is the union of all sets L(Aµ)∩L(Bµ′) where µ and
µ′ are arbitrary parameter assignments. Meanwhile L((A ⊗ B,FA × FB)) is the union
of all sets L(Aµ) ∩ L(Bµ), where the same µ is applied in both A and B. As such,
L((A⊗B,FA × FB)) ⊆ L((A×B,FA × FB)).

This concludes the introduction of the synchronized product, one of the building blocks
for CFPA. Now we need to define the other component, Skolem automata. Given any
complementable PA A, how do we find a PA B such that the synchronized product of A
and B is in complementable normal form?

For every PA A and every word w ∈ L(A), there is a set of “accepting” parameter
assignments T ⊆ Θ such that for every µ ∈ T , it follows that w ∈ L(Aµ). The idea
is to find a relation between w and T which can be expressed using another PA B and
importantly, which can be generalized to all words v ∈ D∗. The latter condition translates
to B being a universal PA. The former condition translates to the following: B should
use the same parameters as A. A word w ∈ L(A) should only be able to complete an
accepting run in B when using a parameter assignment from the set T . Not all parameter
assignments of T need to imply an accepting run in B, but all parameter assignments
from Θ \ T have to lead to non-accepting runs. If B is universal, then for each w ∈ L(A)
there has to be a µ ∈ T such that w completes an accepting run in Bµ.

Example 6.8. In the recurring example of A3 (see figure 6.1), a word w ∈ L(A3) is
accepted if and only if µ(y) ≤ min(w) and max(w) ≤ µ(y) + 1, where max(w) and
min(w) denote the largest and smallest letter of w, respectively. A suitable automaton B
does not need to maintain the entire range of possible accepting parameter assignments;
it is sufficient to isolate a single instance of an accepting parameter assignment for each
word. In the example of A3, a word w ∈ L(A3) is always accepted if µ(y) = min(w), a
relation which can be expressed by a PA as depicted in figure 6.2b.

Definition 6.9 (Skolem automaton). Let A be a PA. Let B be a PA such that:

� B is universal,

� the parameters of A are a subset of the parameters of B: YA ⊆ YB, where YA and
YB are the finite sets of parameters used by A resp. B, as defined in notation 3.2,

� for all w ∈ L(A), if w ∈ L(Bµ) for some µ ∈ Θ then w ∈ L(Aµ).

Then B is called a Skolem automaton of A.

Finally, we can construct CFPA!

Proposition 6.10. Let A = (M,Q, q0, δ, FA) be a PA that is (without loss of gener-
ality) deterministic per assignment. Let B = (M,P, p0, δ

′, FB) be a Skolem automaton
of A. Then the synchronized product (A ⊗ B,FA × FB) is equivalent to A and is in
complementable normal form. The complement of L(A) is accepted by the set of states
(Q \ FA)× FB.

Proof. Let w ∈ L(A). Since B is universal, there is a parameter assignment µ ∈ Θ such
that w ∈ L(Bµ). By the definition of B, this means w ∈ L(Aµ), and no complete run of w
in Aµ may terminate in a non-accepting state because A is deterministic per assignment.
Therefore, L(A) ⊆ L((A⊗B,FA × FB)).
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Let now w ∈ L((A⊗B,FA × FB)). Then there exists a parameter assignment µ such
that w ∈ L(Bµ) and w ∈ L(Aµ). Therefore, L((A⊗B,FA×FB)) ⊆ L(A). This concludes
the proof that L(A) = L((A⊗B,FA × FB)).

In order to prove that (A ⊗ B,FA × FB) is in complementable normal form, it is
sufficient to prove that (A⊗B, (Q \ FA)× FB) identifies the complement of L(A).

Let w ∈ L(A)c. As B is universal, there is a parameter assignment µ ∈ Θ such that
w ∈ L(Bµ). Since A is deterministic per assignment, w completes a run in Aµ which
terminates in a non-accepting state since w /∈ L(A). Therefore, w completes a run in
(A⊗B)µ which terminates in (Q \ FA)× FB.

Vice versa, let a word w terminate in (p, b) ∈ (Q \ FA) × FB for some parameter
assignment µ. Thus, w ∈ L(Bµ). If w were in L(A), then the the third condition would
force the run of w in Aµ to terminate in an accepting state. However, because w terminates
its run in Aµ in a non-accepting state, w cannot lie in L(A).

An additional restriction has snuck into this proposition that has not been mentioned
before: We demand A to be deterministic per assignment.

A construction using the synchronized product with a Skolem automaton will only
work if the PA A to be complemented allows runs to terminate in non-accepting states if
the chosen parameter assignment does not lead to acceptance. In A3, for instance, there
are no non-accepting states and all non-accepting runs die. This is a problem, because
the runs of words w ∈ L(A3)

c will die in any synchronized product, as well, and never
terminate in a state identifying the word correctly as part of the complement. A PA needs
to be at minimum complete per assignment for this method to work.

There is reason to restrict this condition further and demand the PA A to be determin-
istic per assignment, although strictly speaking, it is not necessary: This way, scenarios
in which a word w may complete both an accepting and a non-accepting run in Aµ, due
to Aµ being non-deterministic, are avoided. If A is not deterministic per assignment, we
need to demand that for each w ∈ L(A), if w ∈ L(Bµ) then all paths of w in L(Aµ) need
to terminate in accepting states. Otherwise, words of L(A) will incorrectly be identified
as part of the complement. This additional condition is complicated, while determinism
per assignment can always be achieved algorithmically, so the latter is preferred.

Example 6.11. We will walk through the construction of a CFPA step-by-step. Consider
A2, the automaton which accepts all words in which the last letter is largest:

q0start q1

x < y

x = y

Figure 6.5: A2.

First, we need to transform A2 into a PA that is deterministic per assignment. Since
A2 is relatively simple (no two transitions exiting the same state can be viable at the
same time), we can do this by simply adding a third state and redirecting all runs that
would otherwise die:
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q0start

q2

q1

x < y

x = y

x > y ⊤

⊤

Figure 6.6: ⟨A2⟩.

We call this new automaton ⟨A2⟩.
⟨A2⟩ has one parameter y. Given a word w ∈ L(⟨A2⟩), which parameter assignments

will allow w to complete an accepting run, and can the relationship between w and those
parameter assignments be generalized to all words in D∗? There are two possible avenues,
as w will complete an accepting run in ⟨A2⟩µ if two conditions are met: µ(y) has to be the
last letter in w, and µ(y) has to be the maximum of all letters in w. On its own, either
of these conditions can express the “suitability” of a parameter assignment: µ(y) is a
suitable parameter value for the word w ∈ L(⟨A2⟩) if it corresponds to the last letter, and
µ(y) is a suitable parameter value for the word w ∈ L(⟨A2⟩) if it corresponds to the largest
letter. Moreover, either of these conditions can be generalized to all words in D∗, as every
non-empty word has a largest element and a last element. We will keep developing both
approaches in parallel: B1 accepts a word if µ(y) corresponds to its largest letter, and B2

accepts a word if µ(y) corresponds to its last letter.

p0start p1 p2
x < y

x = y

x < y

x = y

x ≤ y

(a) B1.

r0start r1

x = y
x ̸= y

x ̸= y

x = y

(b) B2.

Figure 6.7: Two possible Skolem automata.

Now, we can construct the synchronized product sets ⟨A2⟩ ⊗ B1 and ⟨A2⟩ ⊗ B2. Let
FA = {q1} be the set of accepting states of ⟨A2⟩, FB1 = {p0, p2} be the set of accepting
states of B1 and FB2 = {r0} be the set of accepting states of B2.
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(q0, r0)start (q0, r1) (q2, r0)

(q1 , r0)

(q2, r1)

x < y

x = y

x > y

x < y

x = y

x > y

x ̸= y

x = y

x = y

x ̸= y

x ̸= y

x = y

Figure 6.8: (⟨A2⟩ ⊗B2, FA × FB2), a CFPA.

(q0, p0)start (q1 , p1) (q2, p2)

(q0, p1)

x < y

x = y

x < y

x = y

x ≤ y

x ≤ y

Figure 6.9: (⟨A2⟩ ⊗B1, FA × FB1), a CFPA.

In the figures 6.9 and 6.8, the accepting state of ⟨A2⟩ has been colored red, and the
accepting states of B1 and B2 have been colored blue. Unreachable states and unsatisfiable
transitions have been removed to improve comprehensability. Note that, despite being
derived differently, both automata are equivalent.

If the run of a word terminates in a product state that is both red and blue, the word
is part of L(A2). If the run terminates in a product state that is blue but not red, the
word is part of L(A2)

c.
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Remark 6.12. Skolem automata do not have to be deterministic per assignment. In fact,
they can be neither complete per assignment nor conclusive per assignment. Consider the
Skolem automata B1 and B2 in figure 6.7. Obviously B1 is not complete per assignment,
because every run dies if µ(y) is smaller than the current letter. But is there a simpler
way to construct B2, which is unnecessarily deterministic per assignment?

r0start r1

x = y
x ̸= y

x ̸= y

x = y

(a) B2 as seen in example 6.11.

r0start r1

⊤
x = y

(b) An alternative to B1? No!

Figure 6.10: Illustrating the importance of universality, which makes Skolem automata
more more convoluted as the empty word needs to be respected.

At first glance, the PA in figure 6.10b appears to be a less convoluted alternative to B2,
but it is not a universal PA because the empty word does not complete an accepting run!
In order to accept the empty word, we can add a new initial state with an ε-transition
and then eliminate the ε-transition, because the synchronized product construction has
not been defined for PA with ε-transitions. This can be seen in figure 6.11.

r0start r1 r2
ε

⊤

x = y

(a) Adding an ε-transition.

r0start r1 r2
⊤

x = y

⊤

x = y

(b) The resulting PA B′
2 is universal and

fulfills the same purpose as B2.

Figure 6.11: Modifying the PA in figure 6.10b to accommodate the empty word.

The PA B′
2 in figure 6.11 is universal, however it has three states in contrast to B2’s

two states. But does this necessarily translate to an increase in the number of states in the
synchronized product? After all, B1 also has three states, but its synchronized product
with ⟨A2⟩ has fewer states than the synchronized product of B2 and ⟨A2⟩. Maybe there
is a benefit to Skolem automata that are not complete per assignment.
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(r0, q0)start (r1, q1)

(r1, q0)(r2, q1) (r1, q2)

(r2, q2)
x = y

x = y
x < y

x > y

⊤

x = y

x > y

x < y

x = y

x = y

x = y

⊤

Figure 6.12: The synchronized product of B′
2 and ⟨A2⟩.

As can be seen in figure 6.12, the synchronized product of B′
2 and ⟨A2⟩ has six states,

which is worse than the five states of (⟨A2⟩ ⊗ B2, FA × FB2). We can conclude that
there is no inherent benefit to Skolem automata which are incomplete per assignment.
Nor is there a benefit to Skolem automata that are deterministic per assignment, as
(⟨A2⟩ ⊗ B1, FA × FB1) outperforms (⟨A2⟩ ⊗ B2, FA × FB2) with regard to the number of
states.

After concluding the description of our method, this section closes with a brief inves-
tigation into the applicability of the same. According to theorem 6.3, for every comple-
mentable PA, there is an equivalent CFPA. A similarly structured proof can show the
existence of a Skolem automaton for every complementable PA:

Proposition 6.13. For every complementable PA A that is deterministic per assignment,
a suitable Skolem automaton B exists.

Proof. Let A = (M,Q, q0, δA, FA) and Ac = (M,P, p0, δC , FC) be a complementable PA
and its complement, respectively. Without loss of generality, assume that the finite sets
of parameters used by A and Ac are disjoint, YA ∩ YAc = ∅. All parameters used by A
and Ac are contained in the finite union Y ′ = YA ∪ YAc .

Now form the union of A and Ac using ε-transitions and a new state r that is neither
a state of A nor a state of Ac. The resulting PA B = (M,Q ∪ P ∪ {r}, r, δA ∪ δC ∪
{(r, ε, q0), (r, ε, p0)}, FA∪FC) is universal. Let w ∈ L(A) and µ be a parameter assignment
such that a run of w in B terminates in an accepting state q ∈ FA ∪ FC . Then q cannot
lie in FC , because w ∈ L(A). Since the run of w in Bµ has to terminate in a state of FA,
w ∈ L(Aµ).

Finally, since YA ⊆ Y ′, we can set YA := Y ′ (Y ′ is still a finite set, and we can assume
that any parameters y ∈ Y ′ \YAc simply do not occur). Therefore, B fulfills all conditions
defined in definition 6.9.

Applicability of the method hinges solely on the existence of a Skolem automaton,
meaning that in combination with the algorithm achieving determinism per assignment,
the method can be applied to every complementable PA to obtain a CFPA.
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q0start q1

y ≤ x ≤ y + 1
x < y ∨
y + 1 < x

⊤

(a) A PA for L3 that is deterministic
per assignment.

p0start p1 p2

⊤

x = y

⊤
x = z ∧
|x− y| > 1

⊤

(b) A PA for L(A3)
c.

rstart

q0 q1

p0 p1 p2

ε

ε

y ≤ x ≤ y + 1
x < y ∨
y + 1 < x

⊤

⊤

x = z1

⊤
x = z2 ∧
|x− z1| > 1

⊤

(c) Union construction, obtaining a Skolem automaton for A3.

Figure 6.13: The construction of proposition 6.13, again demonstrated using L3.

Example 6.14. Figure 6.13 illustrates the mechanism of proposition 6.13: We combine
a PA for L3 with an arbitrary PA identifying Lc3.

The previous proposition proves the existence of a Skolem automaton for any A which
is deterministic per assignment, but does not provide a method for constructing the
Skolem automaton. After all, the automaton in the proof is obtained using the comple-
ment automaton of A, and if the complement is already known, construction of a CFPA
is obsolete.

So, given a pair of PA A and B, can we verify whether B is a Skolem automaton
of A? A Skolem automaton has to fulfill three properties, which each can be confirmed
with widely differing degrees of difficulty: The universality problem is undecidable, while
YA ⊆ YB is easily checked. The third property can be verified as well, hinging on the
complexity of the non-emptiness problem.

Proposition 6.15. Given a PA A = (M,Q, q0, δA, FA) that is deterministic per assign-
ment and a universal PA B = (M,P, p0, δB, FB), it can be decided whether B is a Skolem
automaton of A.

Proof. The first two properties of Skolem automata are easy to verify, since we already
assume that B is universal and YA ⊆ YB can be checked quickly. We only need to
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prove that for every w ∈ L(A) and every parameter assignment µ, w ∈ L(Bµ) implies
w ∈ L(Aµ).

The condition is breached if there is a w ∈ D∗ and a µ such that w ∈ L(A)∩L(Bµ)∩
L(Aµ)

c. We can construct a PA for L(A) ∩
⋃
µ∈Θ(L(Bµ) ∩ L(Aµ)

c) using both a direct
and a synchronized product, and then verify whether the language is empty.

The language
⋃
µ∈Θ(L(Bµ) ∩ L(Aµ)c) corresponds to the synchronized product (A ⊗

B, (Q \ FA)× FB), as seen in example 6.7. We can then express the intersection using a
direct product with A: L(A)∩

⋃
µ∈Θ(L(Bµ)∩L(Aµ)c) = (A×(A⊗B, (Q\FA)×FB), FA×

(Q \ FA)× FB). If (A× (A⊗B, (Q \ FA)× FB), FA × (Q \ FA)× FB) is empty, then B is
a Skolem automaton of A.

In definition 6.9 and propositions 6.10, which define and describe the construction
of CFPA using Skolem automata, the PA A is implied but not required to be comple-
mentable. This opens up an interesting new way of confirming whether a PA is comple-
mentable: A PA (assumed to be deterministic per assignment) is complementable if and
only if a Skolem automaton exists.

6.3 Closure and Decision Properties

Similar to other classes of PA, we will now quickly investigate the properties of CFPA
regarding decision problems and Boolean operations.

First, it is refreshing to see the set of complement-identifying states FC does not need
to be known along with a CFPA. As long a PA is known to be in complementable normal
form, this information can be reconstructed.

Theorem 6.16. Given a CFPA A = (M,Q, q0, δ, F ), it is possible to identify a set of
states FC ⊆ Q such that Ac = (M,Q, q0, δ, FC) identifies the complement of A.

Proof. It is sufficient to identify the set of all states that cannot be reached by words in
L(A). As seen in proposition 4.17, we can use a direct product construction to observe
whether two states of a PA can be reached by the same word.

Let A × A be the set of direct product automata of A with itself, using disjoint
parameter sets. Then, a state q lies in FC if and only if the PA (A × A,F × {q}) is
empty.

This method identifies the largest subset FC ⊆ Q such that Ac = (M,Q, q0, δ, FC)
identifies the complement of A, but FC does not need to be the only set of states with
this property.

Theorem 6.16 significantly simplifies the complementation of CFPA, since the set of
complement-accepting states FC does not need to be communicated along with the CFPA.
Therefore, the decision properties of CFPA are largely similar to those of SDPA.

Theorem 6.17. The universality, containment and equivalence problems are decidable
for CFPA.

Proof. The proof for the containment and equivalence problems is analogous to the proof
for SDPA, since the latter only relied on the fact that SDPA can be easily complemented.
Since a PA is universal if and only if its complement is empty, the universality problem
is also decidable.

80



CFPA must be closed under all Boolean operations, because complementable PA are
closed under all Boolean operations and every complementable PA is equivalent to some
CFPA. Therefore, the following theorem is not concerned with existence but with com-
putability: The proof contains a description of how to derive CFPA that are equivalent
to the complement, union and intersection of two given CFPA.

Theorem 6.18 (Boolean operations on CFPA). Given two CFPA A1 = (M,Q, q0, δ1, F1)
and A2 = (M,P, p0, δ2, F2), CFPA that represent the union L(A1)∪L(A2), the intersection
L(A1) ∩ L(A2) and the complement L(A1)

c can be computed algorithmically.

Proof. Let C1 ⊆ Q be the set of complement-accepting states of A1, i. e. L(A1)
c =

L((M,Q, q0, δ1, C1)), and let C2 ⊆ P be the set of complement-accepting states of A2.
Both C1 and C2 can be identified according to theorem 6.16, and (M,Q, q0, δ1, C1) is
obviously a CFPA. This concludes the statement for the complementation of CFPA.

CFPA are by definition complete, as every word will complete a run in either an
accepting or a complement-accepting state. Therefore, the direct product A1×A2 can be
employed to construct CFPA for L(A1) ∪ L(A2) and L(A1) ∩ L(A2).

The language L(A1) ∪ L(A2) is represented by (A1 × A2, F1 × P ∪ Q × F2). The PA
is a CFPA because (A1 × A2, C1 × C2) identifies the complement (L(A1) ∪ L(A2))

c.
The language L(A1)∩L(A2) is represented by (A1 ×A2, F1 ×F2). The PA is a CFPA

because (A1 × A2, C1 × P ∪Q× C2) identifies the complement (L(A1) ∩ L(A2))
c.
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Chapter 7

What Have We Learned?

7.1 Revisiting Dijkstra

With a whole toolbox of new methods, we can now revisit the motivating example from
section 1.1. As a reminder, the PA to be complemented looks like this:

q0start

q1 q2

q3 q4

x = p

x = p

x = p

x = p

x = p

x = p2 ∧
p2 ̸= p

x = p2

Figure 7.1: A non-deterministic parametrized automaton P that witnesses whether the
input ring of processes has exactly one privileged process.

Our goal is to find a CFPA equivalent to P .
In P , the possible system states are represented by strings of variables. A system

state has exactly one privileged process if either all variables are identical, or if there
is an index i such that the first i variables are assigned a value p, while the remainder
of variables are assigned a distinct value p2. This distinction of accepting scenarios is
reflected by P ’s structure, as P ’s upper path leading to state q2 recognizes the former
scenario, while the lower path leading to state q4 identifies the latter. In its current form,
P is very comprehensible for human readers.

Unfortunately, P is not deterministic per assignment, which is a prerequisite for ap-
plying the method described in section 6.2. This needs to be remedied. For this purpose,
the non-determinism upon leaving the initial state q0 needs to be resolved and a state
needs to be added to ensure the automaton is complete per assignment.
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q0start q1

q2 q3 q4

x = p

x ̸= p
x = p

x ̸= p
∧x ̸= p2

x = p2
∧x ̸= p

⊤ x = p2

x ̸= p2
x = p

x = p2 ∧ x ̸= p

x ̸= p ∧ x ̸= p2

Figure 7.2: ⟨P ⟩, which is equivalent to P and deterministic per assignment.

We call the new automaton ⟨P ⟩.
Next, we need to find a suitable Skolem automaton. Clearly, a word accepted by

⟨P ⟩ is accepted whenever p is assigned the value of the first letter. Therefore, a Skolem
automaton B should enforce µ(p) = w1 for every w = w1w2 . . . wn ∈ L(Bµ). However,
this alone is not sufficient to enforce the third condition of definition 6.9. The second
parameter p2 also matters, because the runs of words with a single, privileged process
i ̸= 1 only reach the accepting state q3 if µ(p2) = wi. If a different value for µ(p2) is
chosen, then the run terminates in q2, which is a non-accepting state. Since all letters
starting from wi have to be identical, we can set µ(p2) to correspond to the last letter,
since every non-empty word has a last letter.

Therefore, a Skolem automaton B shall accept words whenever p is assigned the first
letter, and p2 is assigned the last letter.

r0start

r1

r2 r3

x = p = p2

x = p

x = p = p2

⊤

x = p2

Figure 7.3: A Skolem automaton B for ⟨P ⟩.

The empty word is accepted with every configuration of parameters. If the word only
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consists of one letter, or if all letters in the word are identical, µ(p2) will default to µ(p).
If we then construct the synchronized product of P ′ = ⟨P ⟩⊗B, we will obtain a CFPA

for P .

(q0, r0)start

(q1, r1) (q4 , r1)

(q2, r2)

(q2, r3)

(q1, r2) (q3 , r3)

(q4 , r2)

(q3 , , r2)

x = p = p2

x = p ∧
x ̸= p2

x = p = p2

x = p = p2

x = p

x = p2

x = p2 ∧
x ̸= p

x ̸= p ∧
x ̸= p2

x = p

x = p2 ∧
x ̸= p

x = p2 ∧
x ̸= p

x ̸= p ∧ x ̸= p2

x = p2

x = p2

x ̸= p2

⊤

x = p2

Figure 7.4: A PA (P ′, F ) equivalent to P in complementable normal form, where F =
{(q4, r1), (q3, r3)}.

In many regards, the resulting synchronized product P ′ reaches or even overshoots the
goals set in section 1.1:

� P ′ can correctly identify L(P )c when selecting Fc = {(q0, r0), (q1, r1), q2, r3)} as the
set of accepting states. It is also capable of identifying the original

� While appearing large and convoluted, P ′ is smaller than expected. The transfor-
mation into ⟨P ⟩ did not lead to an exponential increase of the number of states,
and the synchronized product P ′ only consists of 9 states instead of the expected
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maximum size of 20. The number of states also stays below the limit provided the-
orem 6.3, which is 11 based on P and the PA P c manually constructed in figure 1.3.
Note that P c itself is not a CFPA, since the runs of words in which the first letter
is privileged always terminate in state q1, which is a weak state. language when
choosing F = {(q4, r1), (q3, r3)}.

� P ′ has been obtained using a method that can be generalized to other comple-
mentable PA.

� The correctness of P ′ can be argued both based on the method, which has been
proven to work correctly, and by applying the construction in the proof of theo-
rem 6.16.

7.2 Future research

Over the course of this thesis, we have bumped into a number of open questions that
leave room for future research. First and foremost, since the universality problem is
undecidable for PA, there cannot be an algorithm that both identifies and then comple-
ments complementable PA. It remains an open question whether part of the problem is
decidable.

Question 1. Is there a method to identify complementable PA? Or is there a method
which can complement PA that are known to be complementable?

Of similar importance is the question whether completeness of PA is decidable. A PA
is complete if every word completes a run.

Question 2. Is there an algorithm that correctly identifies complete parametrized au-
tomata?

This question is crucial because it plays into two important concepts we have intro-
duced to overcome the limitations imposed by the undecidability of the complementation
problem: Strong determinism, and complementable normal form.

Completeness may be easier to prove for conclusive PA, because it is easier to localize
instances where a word does not complete a run. In general, a word whose run is aborted
using one parameter assignment may still complete a different run using a different pa-
rameter assignment. In conclusive PA, we do not have to “backtrack” as much: If a prefix
of a word completes a run, a complete run of the word has to include the prefix’s run.
This leads to the second question, which is a weakened version of the first.

Question 3. Is there an algorithm to correctly identify SDPA?

Such a method exists for variable automata, which allow for tighter control of the
parameters which permit a word to complete a run. An equivalent method for PA has
not been found yet.

We can pose the same question for PA in complementable normal form.

Question 4. Is there an algorithm that correctly identifies CFPA?

There is also an open gap in the construction of CFPA, as we have not provided a
method of finding suitable Skolem automata.
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Question 5. Is there a method for obtaining Skolem automata?

A first step might be to identify subclasses of parametrized automata for which the
question is easier to answer.

Question 6. Are there reasonable subclasses of PA, SDPA or CFPA for which the com-
pleteness problem is decidable?

Trivial answers are deterministic finite-state or symbolic automata.

This thesis barely scratches the surface when it comes to studying the properties of
the parameter assignment. We have defined strictness and strictness-when-accepting, but
only completed a partial investigation on the prevalence of those concepts.

At first, the existence of PA that cannot be made strict-when-accepting needs to be
proven.

Question 7. Is there a language that can be accepted by a PA, but not by a PA that is
strict-when-accepting?

A strong candidate is L1, the language of all unsorted words.
Ultimately, we hope for a connection between complementability and strictness. We

posit that both properties coincide.

Question 8. Is the class of PA that can be complemented exactly the class of PA that
can be made strict-when-accepting?

A first step might be to investigate the parameter assignment’s properties for variable
automata.

Question 9. Is there a VA that is not equivalent to a VA that is strict-when-accepting?
Is a VA complementable if and only if it can be made strict-when-accepting?

Finally, we note that strictness (as well as strictness-when-accepting) is a syntactic
property that is usually more powerful than necessary and does not allow for much nuance.
Oftentimes, making a PA strict adds unneeded complexity while making the PA less
comprehensible and harder to work with. There are two possible angles from which we
can close in on a more fine-grained characterization. For one, the strictness criterion could
be constrained to only the parameters that actually occur during a run. A lot of bloat in
strict automata is caused because parameters that are not relevant to a word’s run need
to be taken care of. Another stems from the fact that transitions often permit ranges
of parameters, instead of assigning a parameter directly, and these ranges may get more
refined as a word’s run progresses.

Therefore, another challenge for future researchers lies in finding meaningful, more
fine-grained descriptions of the properties of the parameter assignment, and how these
properties can be exploited when complementing parametrized automata.

This work does not touch on the subject of parametrized transducers [17] or parametrized
automata on infinite words [2], either of which warrant a separate investigation.
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7.3 Conclusions

In this thesis, we have laid the foundation for a theory of parametrized automata and
obtained a solid grasp for the challenges regarding the complementation of PA. We have
shown PA are not closed under complementation, and an algorithm that either comple-
ments a given PA, or returns that the PA is not complementable, does not exist.

We have identified SDPA and CFPA as subclasses of PA that can be easily comple-
mented. Most of the important decision problems are decidable for SDPA and CFPA, and
either are closed under all Boolean operations. While SDPA have shown themselves to
be elusive, as they do not encompass all complementable PA, we have shown that every
complementable PA can be transformed into a CFPA, and proposed a method by which
such a transformation can be achieved.
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Glossary

ε-transition A transition that does not consume a letter. 17

alphabet A non-empty set. The elements of this set are called letters. 10

CFPA A parametrized automaton in complementable normal form. 67

complement The complement of a language A is the language of all words that are not
part of A. 11

complement automaton In the context of automata, an automaton C is the comple-
ment automaton of an automaton A if C accepts exactly the words that A does not
accept. 18

complementable A parametrized automaton A is complementable if there exists an-
other parametrized automaton C fulfilling L(C) = L(Ac). 39

complementable normal form A parametrized automaton is in complementable nor-
mal form if it can be transformed into its own complement automaton by selecting
a different set of accepting states. 67

complete A parametrized automaton is complete if every word completes at least one
run. 47

concatenation The operation of appending one word to another to create a new word.
11

conclusive A parametrized automaton is conclusive if every word completes at most one
run. 47

containment problem A decision problem preoccupied with whether a language is a
subset of another language. 20

De Morgan’s laws For sets A and B, it holds that (A∪B)c = Ac ∩Bc and (A∩B)c =
Ac ∪Bc. 39

death of a run The abortion of a run in case a state without viable exit transitions is
reached without having terminated. 18

decidable A decision problem (represented as a set of yes-cases) is decidable if there
exists an algorithm that terminates on every input, and correctly decides whether
the input belongs to the set or not. 19
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decision problem A yes-or-no question. 19

deterministic A finite-state, register, variable or symbolic automaton is deterministic if
every word completes exactly one run in the automaton. 18

deterministic per assignment A parametrized automaton is deterministic per assign-
ment if for every word and every parameter assignment, there is exactly one complete
run. 34

determinizable A parametrized automaton is determinizable if it is equivalent to an
SDPA. 47

direct product For two parametrized automata A and B, the direct product set A×B
is a set of automata that can simulate two independent runs of a word in A and B
simultaneously. 36

empty word A word that does not contain letters, commonly denoted ε. 10

equivalence problem A decision problem preoccupied with whether two languages are
equivalent. 20

equivalent states Two states q, p of a symbolic automaton are equivalent if they fulfill
the same “purpose” in the automaton, meaning that if the run of a word starting
in q terminates in an accepting state, a run of the word starting in p also has to
terminate in an accepting state, and vice versa. In parametrized automata, two
states are equivalent if they are equivalent for every fixed parameter assignment. 89

evaluation function A function that maps formulae to the Boolean values true and
false according to the semantics defined by a structure and syntax defined by a
signature. 15

finite-state automaton An abstract machine that identifies a regular language. 17

formal language A set of words. 11

formula A logical statement adhering to strict syntactic rules. 14

intersection The intersection of two languages A and B is the language that consists of
all words that simultaneously occur in both A and in B. 11

isomorphism of parametrized automata Two parametrized automata are isomor-
phic if for every parameter assignment, the resulting symbolic automata are iso-
morphic. 91

isomorphism of symbolic automata Two symbolic automata are isomorphic if they
accept the same language and one can be transformed into the other by relabeling
the states, up to equivalence of the guards. 90

membership problem A decision problem preoccupied with whether a word is con-
tained in a language. 20

89



minimum of a parametrized automaton The minimum of a parametrized automa-
ton A is obtained by eliminating redundant, equivalent states. 90

minimum of a symbolic automaton The minimum of a symbolic automaton A is ob-
tained by eliminating redundant, equivalent states. It is the automaton with the
least number of states that is equivalent to A. 90

non-emptiness problem A decision problem preoccupied with whether a language is
not empty. 19

NP The complexity class containing all decision problems solvable by a non-deterministic
Turing machine in polynomial time. 20

P The complexity class containing all decision problems solvable by a deterministic Tur-
ing machine in polynomial time. 20

parameter assignment A function that maps the parameters of a parametrized au-
tomaton to concrete values. 28

parametrized automaton An automaton suited for languages over infinite alphabets,
whose transitions are labeled with logical formulae that also contain a finite number
of non-reassignable parameters. 27

power set The power set of a set S is the set of all subsets of S, including S itself and
the empty set. 18

PSPACE The complexity class containing all decision problems solvable by a determin-
istic Turing machine in polynomial space. 20

reachability problem A decision problem preoccupied with whether for a state of an
automaton, there exists a word such that a run of that word enters that state. 20

register automaton An automaton with finite, reassignable storage space for input let-
ters which can be compared to upcoming letters for equality. Suitable for languages
over infinite alphabets. 21

regular expression An expression that constructs a language. Regular expressions are
defined inductively from smaller regular expressions, where base cases are individual
letters and the empty language and permitted operations are concatenation, union
and Kleene closure. 12

regular language A formal language that can be defined by a regular expression. 12

run The sequence of states and transitions traversed by a word in an automaton. If
picturing automata as directed graphs, a run is a path starting in the initial state.
17

SDPA A strongly deterministic parametrized automaton. 47

semidecidable A decision problem (represented as a set of yes-cases) is semidecidable if
there exists an algorithm that terminates for every input that is part of the set. 19
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set of parameters Each parametrized automaton makes use of a finite number of non-
reassignable parameters that can occur in the transition guards. 27

signature A tuple defining the symbols (and their arity) that may occur in a logical
formula. 13

Skolem automaton A Skolem automaton for a fixed PA A is a universal parametrized
automaton which accepts a word in L(A) only if the chosen parameter assignment
leads exclusively to accepting runs in A. 70

strict A parametrized automaton is strict if for every non-empty word there is at most
one parameter assignment such that the word completes a run. 58

strict-when-accepting A parametrized automaton is strict-when-accepting if for every
non-empty accepted word there is exactly one parameter assignment such that the
word completes an accepting run. 58

strongly deterministic A parametrized automaton is strongly deterministic if every
word completes exactly one run. 47

structure A tuple defining how to interpret a formula. 14

subformula A formula that occurs in the construction of a larger formula. 14

symbolic finite automaton An automata class suitable for infinite alphabets where
transitions are labeled with logical formulae instead of letters. 25

synchronized product For two parametrized automata A and B, the synchronized
product A × B is a set of automata that can simulate two runs of a word in A
and B simultaneously. The parameter sets of A and B are permitted to intersect,
therefore the runs are not independent. 69

theory Can formalize complex structures to allow for logical reasoning. 16

union The union of two languages A and B is the language that contains exactly all
words of A and all words of B. 11

universal language The language containing all words (over a fixed alphabet D). 11

universality problem A decision problem preoccupied with deciding whether a lan-
guage is equivalent to the universal language. 19

variable assignment A function that maps the variables occurring in formulae to con-
crete values. 14

variable finite automaton An automaton suitable for languages over infinite alphabets
with finite, non-reassignable storage space for input letters which can be compared
for equality and inequality to upcoming letters. 22

viable A transition is viable if it permits the current letter to exit the current state. 18

word A finite sequence of letters. 10
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Appendix A

Minimization

There is a problem that has, so far, not been adressed: Many of the operations performed
on PA (such as both kinds of product constructions) lead to an increase in the number
of states. Sometimes, this increase is unavoidable. For example, a CFPA will often need
to have more states than an equivalent PA, since the latter does not need to concern
itself with identification of the complement. Another example is determinization per
assignment, as described in proposition 3.9. The algorithm can lead to a worst case
exponential blowup of the number of states, yet determinism per assignment is a necessary
requirement for the construction of CFPA.

Nonetheless, there is an increasing need for a method to simplify PA while preserving
important properties. Working with large automata both increases computation time
and decreases comprehensibility. Consider figures 6.8 and 6.9: Although the PA look
very different, both are in complementable normal form and describe the same language.
Ideally, there would be a simplification method that yields a smaller, “standardized”
version of either PA.

On the search for such a method, we turn to minimization, which is another concept
that can be lifted from finite and symbolic automata. The following results will lean
heavily on [5].

In symbolic automata, minimization has very pleasant properties: For every SFA A,
there exists a SFA Min(A) which is equivalent to A, has a minimal number of states and
can be computed algorithmically. If two SFA A and B are equivalent, i. e., describe the
same language, then Min(A) and Min(B) will be identical up to relabeling of states and
equivalence of transitions. In this situation, we call Min(A) and Min(B) isomorphic.
Isomorphism is “stronger” than equivalence because the latter does not care about the
structure of the automata.

Transferring minimization and all underlying and accompanying concepts to PA re-
quires thorough preparation. We will only give a brief introduction to minimization of
SFA, omitting most proofs, and then investigate how the concept may be applied to PA.

Definition A.1 (equivalence of states in SFA). Let A = (M,Q, q0, δ, F ) be a SFA and q
be a state of A. Let Lq(A) describe the set of words that terminate in an accepting state
of A when starting in q, meaning that a word w = (w1, . . . , wn) is part of L

q(A) if there
is a sequence of states and transitions (q, ϕ1, q1), . . . , (qn−1, ϕn, qn) such that qn ∈ F is an
accepting state and ϕi evaluates to true when plugging in wi for all i = 1, . . . , n. Two
states q, p ∈ Q are equivalent, q ∼ p, if Lq(A) = Lp(A).
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For example, Lq0(A) = L(A) describes the entire language of an SFA. The relation ∼ is
an equivalence relation. An SFA can be minimized by eliminating redundant, equivalent
states.

Theorem A.2 (minimization of SFA). For any deterministic, normalized SFA A =
(M,Q, q0, δ, F ), let Min(A) = (M,Q/∼, q0/∼, δ/∼, F/∼) be the minimum of A, where

� Q/∼ is the quotient set of Q by ∼,

� q0/∼ is the equivalence class of q0,

� F/∼ is the quotient set of F by ∼, i. e., the set of equivalence classes of states in F ,

� and δ/∼ = {(q/∼,
∨
φ∈S φ, p/∼) | q/∼, p/∼ ∈ Q/∼, S = {φ | (q, φ, p) ∈ Q, q ∈ q/∼, p ∈

p/∼}}.

It holds that L(A) = L(Min(A)), and Min(A) is deterministic and normalized.
The minimum of an SFA is unique up to relabeling of states and equivalence of tran-

sitions: If there are two SFA A, B where L(A) = L(B), then Min(A) and Min(B) are
isomorphic.

Proof. See [5, section 2, theorem 2].

Definition A.3 (isomorphism of SFA). Two SFA A = (M,Q, q0, δA, FA), B = (M,P, p0,
δB, FB) are isomorphic if L(A) = L(B) and there is a bijection f : Q→ P such that

� f(q0) = p0,

� q ∈ FA ⇔ f(q) ∈ FB,

� and for every pair of transitions (q, φ, q′) and (f(q), ψ, f(q′)), φ is satisfiable if and
only if ψ is satisfiable.

Several algorithms for the minimization of SFA and an exhaustive explanation of
the underlying theory can be found in [5]. We can attempt to extend the concept of a
minimum to a PA A by applying it to the SFA Aµ which results from fixing a parameter
assignment µ.

Definition A.4 (equivalence of states in PA). Let A = (M,Q, q0, δ, F ) be a PA. Two
states q, p ∈ Q are equivalent, q ∼ p, if Lq(Aµ) = Lp(Aµ) for every parameter assignment
µ ∈ Θ.

Definition A.5 (minimization of PA). For any PA A = (M,Q, q0, δ, F ) that is deter-
ministic per assignment, let Min(A) = (M,Q/∼, q0/∼, δ/∼, F/∼) be the minimum of A,
where

� Q/∼ is the quotient set of Q by ∼,

� q0/∼ is the equivalence class of q0,

� F/∼ is the quotient set of F by ∼, i. e., the set of equivalence classes of states in F ,

� and δ/∼ = {(q/∼,
∨
φ∈S φ, p/∼) | q/∼, p/∼ ∈ Q/∼, S = {φ | (q, φ, p) ∈ Q, q ∈ q/∼, p ∈

p/∼}}.
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It holds that L(A) = L(Min(A)).

If we want to see whether the isomorphism properties of minimized SFA hold up
when applied to PA, we first need to define isomorphism for PA. Once more, there is no
canonical or natural way to translate the concept to PA, since the behaviour of a PA is
strongly influenced by its parameters. We choose a very strict definition of isomorphism
that does not permit transformation of parameters aside from relabeling.

Definition A.6 (isomorphism of PA). Let A and B be two PA, where YA is the set of
parameters used by A and YB is the set of parameters used by B. Then A and B are
isomorphic if there is a bijection f : YB → YA such that for every parameter assignment
µ : YA → D, the SFA Aµ and Bµ◦f are isomorphic.

This naturally implies L(A) = L(B).

Theorem A.7. The minimum of PA is not unique up to isomorphism. There are PA A
and B such that L(A) = L(B), but Min(A) is not isomorphic to Min(B).

q0start q1

y ≤ x ≤ y + 1
x < y ∨
y + 1 < x

⊤

(a) A.

p0start p1

z − 1 ≤ x ≤ z
x < z − 1 ∨

z < x

⊤

(b) B.

Figure A.1: Two PA that are deterministic per assignment and describe the language L3.

Proof. The example automata A and B both describe the language L3. Both are deter-
ministic per assignment and also their own minimum, because every PA that is determin-
istic per assignment and does not describe the universal or empty language needs to have
at least two states. However, A and B are not isomorphic: the only possible bijection
f : YB → YA maps z to y, and L(Aµ) ̸= L(Bµ◦f ) for all µ : YA → D. For example,
the word (1, 1.5) is accepted by Aµ when µ(y) = 1, but it is not accepted by Bµ◦f since
1.5 > µ(f(z)) = 1.

This result is discouraging at first, however it assumes that there is no known relation
between A and B. We will see next that the product provides an interesting edge case
where the minima of two distinct PA are isomorphic.

Proposition A.8 (minimization of product). Let there be two PA A = (M,Q, q0, δA, FA)
and B = (M,P, p0, δB, FB) that are deterministic per assignment. Then the PA Min(A),
Min((A×B,FA × P ) and Min((A⊗B,FA × P ) are isomorphic.

Proof. It is sufficient to prove that, for arbitrary q ∈ Q, p ∈ P , Lq(Aµ) = L(q,p)((A ×
B,FA × P )µ′) = L(q,p)((A⊗B,FA × P )µ′) for any µ

′ where µ′|YA = µ.
Let w = (w1, . . . , wn) ∈ L(q,p)((A × B,FA × P )µ′) or w = (w1, . . . , wn) ∈ L(q,p)((A ⊗

B,FA × P )µ′). Then in either case, there exists a sequence of states and transitions
((q, p), φ1 ∧ ψ1, (q1, p1)), . . . , (qn−1, pn−1), φn ∧ ψn, (qn, pn)) such that qn ∈ FA and φi ∧ ψi
evaluates to true when plugging in wi. Then the sequence (q, φ1, q1), . . . , (qn−1, φn, qn)
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is obviously a path of w in Aµ′|YA that starts in q and terminates in an accepting state.
Therefore, w ∈ Lq(Aµ′|YA ).

For the other direction, let w ∈ Lq(Aµ) for some parameter assignment µ. Since A,
(A×B,FA×P ) and (A⊗B,FA×P ) are deterministic per assignment, w will terminate
a run in (A×B,FA × P )µ′ and (A⊗B,FA × P )µ′ in some accepting state in FA × P for
any parameter assignment µ′ where µ′|YA = µ.
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